【題目】袋中有紅、黃、白色球各1個,每次任取1個,有放回地抽三次,求基本事件的個數(shù),寫出所有基本事件的全集,并計算下列事件的概率:

1)三次顏色各不相同;

2)三次顏色不全相同;

3)三次取出的球無紅色或黃色.

【答案】1;(2;(3;

【解析】

按球顏色寫出所有基本事件;

1)計數(shù)三次顏色各不相同的事件數(shù),計算概率;

2)計數(shù)三次顏色全相同的事件數(shù),從對立事件角度計算概率;

3)計數(shù)三次取出的球無紅色或黃色事件數(shù),計算概率;

按抽取的順序,基本事件全集為:

{(紅紅紅),(紅紅黃),(紅紅藍),(紅黃紅),(紅黃黃),(紅黃藍),(紅藍紅),(紅藍黃),(紅藍藍),(黃紅紅),(黃紅黃),(黃紅藍),(黃黃紅),(黃黃黃),(黃黃藍),(黃藍紅),(黃藍黃),(黃藍藍),(藍紅紅),(藍紅黃),(藍紅藍),(藍黃紅),(藍黃黃),(藍黃藍),(藍藍紅),(藍藍黃),(藍藍藍)},共27個.

1)三次顏色各不相同的事件有(紅黃藍),(紅藍黃),(黃紅藍),(黃藍紅),(藍紅黃),(藍黃紅),共6個,概率為;

2)其中顏色全相同的有3個,因此所求概率為;

3)三次取出的球紅黃都有的事件有12個,因此三次取出的球無紅色或黃色事件有15個,概率為

無紅色或黃色事件

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖組合體中,三棱柱的側(cè)面是圓柱的軸截面(過圓柱的軸,截圓柱所得的截面),是圓柱底面圓周上不與,重合的一個點.

(1)求證:無論點如何運動,平面平面;

(2)當點是弧的中點時,求四棱錐與圓柱的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)甲乙兩種產(chǎn)品所得的利潤分別為 (萬元),它們與投入資金 (萬元)的關(guān)系為:.今將300萬資金投入生產(chǎn)甲乙兩種產(chǎn)品,并要求對甲乙兩種產(chǎn)品的投入資金都不低于75萬元.

(1)設(shè)對乙種產(chǎn)品投入資金 (萬元),求總利潤 (萬元)關(guān)于的函數(shù);

(2)如何分配投入資金,才能使總利潤最大?并求出最大總利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,以橢圓的短軸為直徑的圓與直線相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)橢圓過右焦點的弦為、過原點的弦為,若,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),其中.

1)討論的極值點的個數(shù);

2)若,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (是自然對數(shù)的底數(shù))

(1)求證:

(2)若不等式上恒成立,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“微信運動”已成為當下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

(1)若采用樣本估計總體的方式,試估計小王的所有微信好友中每日走路步數(shù)超過5000步的概率;

(2)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認為“評定類型”與“性別”有關(guān)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】天干地支紀年法,源于中國,中國自古便有十天干與十二地支.十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支紀年法是按順序以一個天干和一個地支相配,排列起來,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年為“甲子”,第二年為“乙丑”,第三年為“丙寅”,…,以此類推.排列到“癸酉”后,天干回到“甲”重新開始,即“甲戌”,“乙亥”,之后地支回到“子”重新開始,即“丙子”,…,以此類推.已知2018年為戊戌年,那么到改革開放一百年,即2078年為__________年.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1)已知函數(shù),試判斷函數(shù)的單調(diào)性,并說明理由;

2)已知函數(shù).

i)判斷的奇偶性,并說明理由;

ii)求證:對于任意的x ,yR,且x≠±1 y≠±1,xy≠1都有.

3)由⑵可知滿足①式的函數(shù)是存在的,如.問:滿足①的函數(shù)是否存在無窮多個?說明理由.

查看答案和解析>>

同步練習冊答案