(本大題9分)已知是定義在R上的奇函數(shù),當(dāng)時(shí),
(1)求的表達(dá)式;
(2)設(shè)0<a<b,當(dāng)時(shí),的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ae/b/1kenv3.png" style="vertical-align:middle;" />,求a,b的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)如果存在,使函數(shù)在處取得最小值,試求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義域?yàn)镽的函數(shù)是奇函數(shù)。
(1)求的值;
(2)用定義證明在上為減函數(shù);
(3)若對于任意,不等式恒成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
.(12分)已知函數(shù)在R上為奇函數(shù),,.
(I)求實(shí)數(shù)的值;
(II)指出函數(shù)的單調(diào)性.(不需要證明)
(III)設(shè)對任意,都有;是否存在的值,使最小值為;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)(,).
(I)若函數(shù)在其定義域內(nèi)是減函數(shù),求的取值范圍;
(II)函數(shù)是否有最小值?若有最小值,指出其取得最小值時(shí)的值,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),且.
(Ⅰ)判斷的奇偶性并說明理由;
(Ⅱ)判斷在區(qū)間上的單調(diào)性,并證明你的結(jié)論;
(Ⅲ)若在區(qū)間上,不等式恒成立,試確定實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題10分)已知函數(shù)是奇
函數(shù),當(dāng)x>0時(shí),有最小值2,且f (1).
(Ⅰ)試求函數(shù)的解析式;
(Ⅱ)函數(shù)圖象上是否存在關(guān)于點(diǎn)(1,0)對稱的兩點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com