【題目】已知直線l:,半徑為4的圓C與直線l相切,圓心C在x軸上且在直線l的右上方.
(Ⅰ)求圓C的方程;
(Ⅱ)過點(diǎn)M (2,0)的直線與圓C交于A,B兩點(diǎn)(A在x軸上方),問在x軸正半軸上是否存在定點(diǎn)N,使得x軸平分∠ANB?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.
【答案】(Ⅰ)x2+y2=16.(Ⅱ)存在點(diǎn)N為(8,0)時(shí),能使得∠ANM=∠BNM總成立.
【解析】分析:(Ⅰ)根據(jù)已知求得a=0,可以求出圓C的方程. (Ⅱ)分AB有斜率和沒有斜率兩種情況討論,當(dāng)AB有斜率時(shí),x軸平分∠ANB, 則kAN=-kBN ,即可求出t的值.
詳解:(Ⅰ)設(shè)圓心C(a,0) (),
則a=0或a= (舍).
所以圓C的方程為x2+y2=16.
(Ⅱ)當(dāng)直線AB⊥x軸時(shí),x軸平分∠ANB.
當(dāng)直線AB的斜率存在時(shí),設(shè)直線AB的方程為y=k(x-2),
假設(shè)N(t,0) 符合題意,又設(shè)A(x1,y1),B(x2,y2),
由得(k2+1)x2-4k2x+4k2-16=0,
所以x1+x2=,x1x2=.
若x軸平分∠ANB, 則kAN=-kBN
即+=0+=0
2x1x2-(t+2)(x1+x2)+4t=0
-+4t=0t=8.
所以存在點(diǎn)N為(8,0)時(shí),能使得∠ANM=∠BNM總成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷函數(shù)的單調(diào)性并證明;
(2)若關(guān)于的不等式在有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:曲線C上的點(diǎn)到直線l的距離的最小值稱為曲線C到直線l的距離,已知曲線C1:y=x2+a到直線l:y=x的距離等于曲線C2:x2+(y+4)2=2到直線l:y=x的距離,則實(shí)數(shù)a= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m,n∈R,若直線(m+1)x+(n+1)y﹣2=0與圓(x﹣1)2+(y﹣1)2=1相切,則m+n的取值范圍是( )
A.[1﹣ ,1+ ]
B.(﹣∞,1﹣ ]∪[1+ ,+∞)
C.[2﹣2 ,2+2 ]
D.(﹣∞,2﹣2 ]∪[2+2 ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,,,,點(diǎn)Q在棱AB上.
(1)證明:平面.
(2)若三棱錐的體積為,求點(diǎn)B到平面PDQ的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(1)證明:PC⊥AD;
(2)求二面角A﹣PC﹣D的正弦值;
(3)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程有實(shí)數(shù)根.
(1)求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m=2時(shí),方程的根為,求代數(shù)式的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為R的半球O的底面圓O在平面α內(nèi),過點(diǎn)O作平面α的垂線交半球面于點(diǎn)A,過圓O的直徑CD作平面α成45°角的平面與半球面相交,所得交線上到平面α的距離最大的點(diǎn)為B,該交線上的一點(diǎn)P滿足∠BOP=60°,則A、P兩點(diǎn)間的球面距離為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年6月14日,第二十一屆世界杯尼球賽在俄羅斯拉開了帷幕,某大學(xué)在二年級作了問卷調(diào)查,從該校二年級學(xué)生中抽取了人進(jìn)行調(diào)查,其中女生中對足球運(yùn)動(dòng)有興趣的占,而男生有人表示對足球運(yùn)動(dòng)沒有興趣.
(1)完成列聯(lián)表,并回答能否有的把握認(rèn)為“對足球是否有興趣與性別有關(guān)”?
有興趣 | 沒有興趣 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
(2)若將頻率視為概率,現(xiàn)再從該校二年級全體學(xué)生中,采用隨機(jī)抽樣的方法每飲抽取名學(xué)生,抽取次,記被抽取的名學(xué)生中對足球有興趣的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列和數(shù)學(xué)期望.
附:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com