分析 求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,由余弦函數(shù)的圖象和性質(zhì),即可得到函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值,從而求出a,b的值.
解答 解:函數(shù)f(x)=xsinx+cosx+a,
f′(x)=sinx+xcosx-sinx=xcosx,
令f′(x)>0,即有xcosx>0,
即有 $\left\{\begin{array}{l}{x>0}\\{cosx>0}\end{array}\right.$或 $\left\{\begin{array}{l}{x<0}\\{cosx<0}\end{array}\right.$,
解得,x∈(0,$\frac{π}{2}$)或(2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$)((k為正整數(shù))
或(2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$)(k為負(fù)整數(shù)).
由于x∈(-π,π),則增區(qū)間為(0,$\frac{π}{2}$),(-π,-$\frac{π}{2}$),
同理解得,減區(qū)間為($\frac{π}{2}$,π),(-$\frac{π}{2}$,0),
∴f(x)極小值=f(0)=cos0+a=0①,f(x)極大值=f(-$\frac{π}{2}$)=f($\frac{π}{2}$)=$\frac{π}{2}$+a=b②,
由①②解得:a=-1,b=$\frac{π}{2}$-1.
點評 本題考查導(dǎo)數(shù)的運用:求單調(diào)區(qū)間,考查三角函數(shù)的圖象和性質(zhì),屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
[8.4,8.9) | 9 | 0.15 |
[8.9,9.4) | m | 0.3 |
[9.4,9.9) | 24 | n |
[9.9,10.4) | q | p |
[10.4,10.9) | 3 | 0.05 |
合計 | t | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com