4.在平面直角坐標(biāo)系xOy中,圓C的極坐標(biāo)方程為ρ=4,經(jīng)過點(diǎn)P(1,2)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\sqrt{3}t}\\{y=2+t}\end{array}\right.$(t為參數(shù)).
(I)寫出圓C的標(biāo)準(zhǔn)方程和直線l的普通方程;
(Ⅱ)設(shè)直線l與圓C相交于A,B兩點(diǎn),求|PA|•|PB|的值.

分析 (I)根據(jù)極坐標(biāo)方程與直角坐標(biāo)方程的對(duì)應(yīng)關(guān)系得出直角坐標(biāo)方程,消去參數(shù)方程中的參數(shù)得出普通方程;
(II)把直線的參數(shù)方程代入圓的方程,利用參數(shù)得幾何意義和根與系數(shù)的關(guān)系得出.

解答 解:(I)∵ρ=4,∴ρ2=16,∴圓C的標(biāo)準(zhǔn)方程是x2+y2=16.
∵$\left\{\begin{array}{l}{x=1+\sqrt{3}t}\\{y=2+t}\end{array}\right.$(t為參數(shù)),∴x-$\sqrt{3}y$=1-2$\sqrt{3}$.
∴直線l的普通方程是x-$\sqrt{3}y$+2$\sqrt{3}$-1=0.
(II)直線l的斜率k=$\frac{\sqrt{3}}{3}$,傾斜角為$\frac{π}{6}$,且直線l過點(diǎn)(1,2).
∴直線l的參數(shù)方程可化為$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=2+\frac{1}{2}t}\end{array}\right.$(t是參數(shù)).
把$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=2+\frac{1}{2}t}\end{array}\right.$代入x2+y2=16得t2+(2+$\sqrt{3}$)t-11=0.
∴t1t2=-11.
∴|PA|•|PB|=|t1t2|=11.

點(diǎn)評(píng) 本題考查了極坐標(biāo)方程,參數(shù)方程與普通方程的轉(zhuǎn)化,參數(shù)方程的幾何意義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.以下有關(guān)命題的說法錯(cuò)誤的是(  )
A.命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
B.若p∧q為假命題,則p,q均為假命題
C.“a<b”是“a+c<b+c”的充要條件
D.命題$p:?{x_0}∈R,{e^{x_0}}≤0$為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若x,y滿足約束條件$\left\{\begin{array}{l}x+y≤0\\ x-y+1≥0\\ y≥0\end{array}\right.$,則z=-2x+y的最大值為( 。
A.1B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=xsinx+cosx+a在區(qū)間(-π,π)上的極小值為0,極大值為b,求實(shí)數(shù)a,b值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.正六邊形的中心和頂點(diǎn)共7個(gè)點(diǎn),以其中3個(gè)點(diǎn)為頂點(diǎn)的三角形的個(gè)數(shù)為( 。
A.38B.35C.32D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=2sinxcosx+2$\sqrt{3}$cos2x-$\sqrt{3}$,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)已知a,b,c分別是△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,a=2且f($\frac{A}{2}$+$\frac{2π}{3}$)=$\sqrt{3}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,在△ABC中,$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AC}$,$\overrightarrow{BP}$=$\frac{1}{3}$$\overrightarrow{BD}$,若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,則下列關(guān)于λ,μ的值說法正確的是( 。
A.λ=$\frac{2}{3}$B.λ=$\frac{1}{3}$C.μ=$\frac{4}{9}$D.μ=$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求過點(diǎn)P(2,-4),且在坐標(biāo)軸上的截距之和為5的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{αn},其前n項(xiàng)和為Sn,且a1=$\frac{9}{2}$,Sn+Sn-1=2an(n≥2).
(1)求證:數(shù)列{Sn}是等比數(shù)列;
(2)設(shè)數(shù)列{bn}滿足bn=$\left\{\begin{array}{l}{3(n=1)}\\{n{a}_{n}(n≥2,n∈N*)}\end{array}\right.$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案