【題目】已知函數(shù)

(1)證明:

(2)若對任意,不等式恒成立,求實數(shù)的取值范圍.

【答案】)見解析; .

【解析】

試題分析:(1)令,再證明在定義域內(nèi)小于等于零即可。

(2)令,對的取值進行分類討論,然后判斷的值是否符合題意,或者利用導數(shù)在分析函數(shù)單調(diào)性中的應用來找出的哪些取值符合題意即可.

試題解析:()令,

所以

遞增;在遞減;

所以

)記則在上,

,時,,單調(diào)遞增,

這與矛盾;

,,遞增,而,這與矛盾;

,, ,單調(diào)遞減;單遞增;

,即恒成立;

,,時,,單調(diào)遞增;時,單調(diào)遞減,,這與矛盾;

⑤若,時,,單調(diào)遞增;時,,單調(diào)遞減,這與矛盾.

綜上,實數(shù)的取值范圍是

點晴:本題考查的是導數(shù)在研究函數(shù)中的綜合應用,第一問不等式的證明通過作差構造新的函數(shù),利用導數(shù)知識證明其最大值小于等于零即可;第二問中,和第一問的區(qū)別在于中含有參數(shù),利用導數(shù)在分析函數(shù)單調(diào)性中的應用來找出的哪些取值符合題意即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=1,AD= ,P矩形內(nèi)的一點,且AP= ,若 ,(λ,μ∈R),則λ+ μ的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設0<a<1,已知函數(shù)f(x)= ,若對任意b∈(0, ),函數(shù)g(x)=f(x)﹣b至少有兩個零點,則a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某家具城進行促銷活動,促銷方案是:顧客每消費滿1000元,便可以獲得獎券一張,每張獎券中獎的概率為,若中獎,則家具城返還顧客現(xiàn)金1000元,某顧客購買一張價格為3400元的餐桌,得到3張獎券,設該顧客購買餐桌的實際支出為(元);

(1)求的所有可能取值;

(2)求的分布列和數(shù)學期望;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某旅游為了解2015年國慶節(jié)期間參加某境外旅游線路的游客的人均購物消費情況,隨機對50人做了問卷調(diào)查,得如下頻數(shù)分布表:

人均購物消費情況

[0,2000]

(2000,4000]

(4000,6000]

(6000,8000]

(8000,10000]

額數(shù)

15

20

9

3

3

附:臨界值表參考公式:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2= ,其中n=a+b+c+d.

(1)做出這些數(shù)據(jù)的頻率分布直方圖并估計次境外旅游線路游客的人均購物的消費平均值;
(2)在調(diào)查問卷中有一項是“您會資助失學兒童的金額?”,調(diào)查情況如表,請補全如表,并說明是否有95%以上的把握認為資助數(shù)額多于或少于500元和自身購物是否到4000元有關?

人均購物消費不超過4000元

人均購物消費超過4000元

合計

資助超過500元

30

資助不超過500元

6

合計

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=ln(x2﹣4x+3)的單調(diào)減區(qū)間為( 。

A. (2,+∞) B. (3,+∞) C. (﹣∞,2) D. (﹣∞,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的多面體是由底面為的長方體被截面所截面而得到的,其中

(1)求的長;

(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中,假命題為(  )

A. 存在四邊相等的四邊形不是正方形

B. z1,z2C,z1z2為實數(shù)的充分必要條件是z1z2互為共軛復數(shù)

C. x,yR,且xy>2,則x,y至少有一個大于1

D. 對于任意nN,都是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)的定義域為[﹣1,5],部分對應值如表,f(x)的導函數(shù)y=f′(x)的圖象如圖所示,

x

﹣1

0

2

4

5

f(x)

1

2

1.5

2

1

下列關于函數(shù)f(x)的命題:
①函數(shù)f(x)的值域為[1,2];
②如果當x∈[﹣1,t]時,f(x)的最大值為2,那么t的最大值為4;
③函數(shù)f(x)在[0,2]上是減函數(shù);
④當1<a<2時,函數(shù)y=f(x)﹣a最多有4個零點.
其中正確命題的序號是

查看答案和解析>>

同步練習冊答案