設(shè)x、y、z∈R+,且x+2y+z=1,則
1
x
+
2
y
+
9
z
的最小值為
 
考點:基本不等式
專題:不等式的解法及應(yīng)用
分析:利用“乘1法”和基本不等式的性質(zhì)即可得出.
解答: 解:∵x、y、z∈R+,且x+2y+z=1,
1
x
+
2
y
+
9
z
=(x+2y+z)(
1
x
+
2
y
+
9
z
)
=14+
2x
y
+
9x
z
+
2y
x
+
18y
z
+
z
x
+
2z
y

≥14+2
2x
y
2y
x
+2
9x
z
z
x
+2
18y
z
2z
y
=36,
當(dāng)且僅當(dāng)z=3x=3y=
1
2
時取等號.
故答案為:36.
點評:本題考查了“乘1法”和基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為R,且滿足f(-x)=
1
f(x)
>0,g(x)=f(x)+c(c為常數(shù))在區(qū)間[a,b]上是減函數(shù).判斷g(x)在[-b,-a]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(1,-2),B(5,6),直線l經(jīng)過AB的中點M,且在兩坐標(biāo)軸上的截距相等,則直線l的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若2sinα+cosα=0,求sin2α-3sinαcosα-5cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知,若0≤θ≤2π,則使tanθ≤1成立的角θ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)y=f(x),y=f(-x),y=-f(x),y=-f(-x)的圖象重合,則函數(shù)y=f(x)的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一袋子中裝有質(zhì)地均勻,大小相同且標(biāo)號分別為3,4,5三個小球,從袋子中有放回地先后抽取兩個小球的標(biāo)號分別為a,b,記ξ=|a-4|+|a-b|.
(Ⅰ)求隨機變量ξ的最大值,并寫出事件“ξ取最大值”的概率.
(Ⅱ)求隨機變量ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是(  )
A、命題“p∨q”為真命題,則命題“p”和命題“q”均為真命題
B、已知x∈R,則“x>1”是“x>2”的充分不必要條件
C、命題“若am2<bm2,則a<b”的逆命題是真命題
D、命題“?x∈R,x2-x>0”的否定是:“?x∈R,x2-x≤0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的三視圖,其體積是
 

查看答案和解析>>

同步練習(xí)冊答案