在平面直角坐標系xOy中,拋物線C的頂點在原點,經(jīng)過點A(2,2),其焦點F在x軸上.
(1)求拋物線C的標準方程;
(2)求過點F,且與直線OA垂直的直線的方程;
(3)設過點M(m,0)(m>0)的直線交拋物線C于D、E兩點,ME=2DM,記D和E兩點間的距離為f(m),求f(m)關于m的表達式.
科目:高中數(shù)學 來源: 題型:解答題
已知離心率為的橢圓的頂點恰好是雙曲線的左右焦點,點是橢圓上不同于的任意一點,設直線的斜率分別為.
(1)求橢圓的標準方程;
(2)當,在焦點在軸上的橢圓上求一點Q,使該點到直線(的距離最大。
(3)試判斷乘積“(”的值是否與點(的位置有關,并證明你的結論;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系xOy中,已知定點A(-4,0)、B(4,0),動點P與A、B連線的斜率之積為-.
(1)求點P的軌跡方程;
(2)設點P的軌跡與y軸負半軸交于點C.半徑為r的圓M的圓心M在線段AC的垂直平分線上,且在y軸右側,圓M被y軸截得的弦長為r.
(ⅰ)求圓M的方程;
(ⅱ)當r變化時,是否存在定直線l與動圓M均相切?如果存在,求出定直線l的方程;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知雙曲線=1的離心率為2,焦點到漸近線的距離等于,過右焦點F2的直線l交雙曲線于A、B兩點,F(xiàn)1為左焦點.
(1)求雙曲線的方程;
(2)若△F1AB的面積等于6,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓=1(a>b>0)的離心率為,且過點P,A為上頂點,F(xiàn)為右焦點.點Q(0,t)是線段OA(除端點外)上的一個動點,
過Q作平行于x軸的直線交直線AP于點M,以QM為直徑的圓的圓心為N.
(1)求橢圓方程;
(2)若圓N與x軸相切,求圓N的方程;
(3)設點R為圓N上的動點,點R到直線PF的最大距離為d,求d的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知定點F(0,1)和直線l1:y=-1,過定點F與直線l1相切的動圓圓心為點C.
(1)求動點C的軌跡方程;
(2)過點F的直線l2交軌跡于兩點P、Q,交直線l1于點R,求·的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C的兩個焦點是)和,并且經(jīng)過點,拋物線的頂點E在坐標原點,焦點恰好是橢圓C的右頂點F.
(1)求橢圓C和拋物線E的標準方程;
(2)過點F作兩條斜率都存在且互相垂直的直線l1、l2,l1交拋物線E于點A、B,l2交拋物線E于點G、H,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知曲線C:(5-m)x2+(m-2)y2=8(m∈R).
(1)若曲線C是焦點在x軸上的橢圓,求m的取值范圍;
(2)設m=4,曲線C與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線C交于不同的兩點M,N,直線y=1與直線BM交于點G.求證:A,G,N三點共線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com