已知離心率為的橢圓的頂點(diǎn)恰好是雙曲線(xiàn)的左右焦點(diǎn),點(diǎn)是橢圓上不同于的任意一點(diǎn),設(shè)直線(xiàn)的斜率分別為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng),在焦點(diǎn)在軸上的橢圓上求一點(diǎn)Q,使該點(diǎn)到直線(xiàn)(的距離最大。
(3)試判斷乘積“(”的值是否與點(diǎn)(的位置有關(guān),并證明你的結(jié)論;
(1)(或(;(2) (;(3) 的值與點(diǎn)的位置無(wú)關(guān)
解析試題分析:(1)注意要分類(lèi)討論,頂點(diǎn)是短軸頂點(diǎn),還是長(zhǎng)軸頂點(diǎn);(2)橢圓上到(距離最大的點(diǎn)是與直線(xiàn)(平行且與橢圓相切的點(diǎn);(3)利用點(diǎn)P在橢圓上滿(mǎn)足橢圓方程,設(shè)點(diǎn)P坐標(biāo),帶入橢圓方程,通過(guò)變形,即可知(=,與k無(wú)關(guān).
試題解析:(1)雙曲線(xiàn)(的左右焦點(diǎn)為(,即(的坐標(biāo)分別為(. 所以設(shè)橢圓的標(biāo)準(zhǔn)方程為(,則(,
且(,所以(,從而(,
所以橢圓(的標(biāo)準(zhǔn)方程為(或(
(2) 當(dāng)(時(shí),(,故直線(xiàn)(的方程為(即(,
設(shè)與(平行的直線(xiàn)方程為:x+2y+m=0,即x=-2y-m,代入橢圓方程得:,
,∵求距離最大,∴,代入方程,解得:,∴點(diǎn)Q(;
(3)設(shè)則,即
.所以的值與點(diǎn)的位置無(wú)關(guān),恒為.
考點(diǎn):(1)橢圓雙曲線(xiàn)的標(biāo)準(zhǔn)方程;(2)直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的右焦點(diǎn),長(zhǎng)軸的左、右端點(diǎn)分別為,且.
(1)求橢圓的方程;
(2)過(guò)焦點(diǎn)斜率為()的直線(xiàn)交橢圓于兩點(diǎn),弦的垂直平分線(xiàn)與軸相交于點(diǎn). 試問(wèn)橢圓上是否存在點(diǎn)使得四邊形為菱形?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,已知,,是橢圓上不同的三點(diǎn),,,在第三象限,線(xiàn)段的中點(diǎn)在直線(xiàn)上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求點(diǎn)C的坐標(biāo);
(3)設(shè)動(dòng)點(diǎn)在橢圓上(異于點(diǎn),,)且直線(xiàn)PB,PC分別交直線(xiàn)OA于,兩點(diǎn),證明為定值并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的焦距為,過(guò)右焦點(diǎn)和短軸一個(gè)端點(diǎn)的直線(xiàn)的斜率為,為坐標(biāo)原點(diǎn).
(1)求橢圓的方程.
(2)設(shè)斜率為的直線(xiàn)與相交于、兩點(diǎn),記面積的最大值為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓經(jīng)過(guò)點(diǎn),其左、右頂點(diǎn)分別是、,左、右焦點(diǎn)分別是、,(異于、)是橢圓上的動(dòng)點(diǎn),連接交直線(xiàn)于、兩點(diǎn),若成等比數(shù)列.
(1)求此橢圓的離心率;
(2)求證:以線(xiàn)段為直徑的圓過(guò)點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓:的離心率為,其長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的和等于6.
(1)求橢圓的方程;
(2)如圖,設(shè)橢圓的上、下頂點(diǎn)分別為,是橢圓上異于的任意一點(diǎn),直線(xiàn)分別交軸于點(diǎn),若直線(xiàn)與過(guò)點(diǎn)的圓相切,切點(diǎn)為.證明:線(xiàn)段的長(zhǎng)為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線(xiàn)C:y2=2px(p>0)的焦點(diǎn)F和橢圓的右焦點(diǎn)重合,直線(xiàn)過(guò)點(diǎn)F交拋物線(xiàn)于A、B兩點(diǎn).
(1)求拋物線(xiàn)C的方程;
(2)若直線(xiàn)交y軸于點(diǎn)M,且,m、n是實(shí)數(shù),對(duì)于直線(xiàn),m+n是否為定值?
若是,求出m+n的值;否則,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,點(diǎn)P到兩圓C1與C2的圓心的距離之和等于4,其中C1:,C2:. 設(shè)點(diǎn)P的軌跡為.
(1)求C的方程;
(2)設(shè)直線(xiàn)與C交于A,B兩點(diǎn).問(wèn)k為何值時(shí)?此時(shí)的值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,拋物線(xiàn)C的頂點(diǎn)在原點(diǎn),經(jīng)過(guò)點(diǎn)A(2,2),其焦點(diǎn)F在x軸上.
(1)求拋物線(xiàn)C的標(biāo)準(zhǔn)方程;
(2)求過(guò)點(diǎn)F,且與直線(xiàn)OA垂直的直線(xiàn)的方程;
(3)設(shè)過(guò)點(diǎn)M(m,0)(m>0)的直線(xiàn)交拋物線(xiàn)C于D、E兩點(diǎn),ME=2DM,記D和E兩點(diǎn)間的距離為f(m),求f(m)關(guān)于m的表達(dá)式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com