方程mx2+(2m+1)x+m=0有兩個不等的實根,則實數(shù)m的取值范圍為(  )
A、(-
1
4
,0)∪(0,+∞)
B、(-∞,-
1
4
C、[
1
4
,+∞)
D、(-
1
4
,+∞)
考點:二次函數(shù)的性質
專題:函數(shù)的性質及應用
分析:由題意可得m≠0,由△=(2m+1)2-4m2>0,求得 m的范圍.
解答: 解:顯然,m=0不滿足條件,
故有m≠0.
由△=(2m+1)2-4m2>0,求得 m>-
1
4

故選:D.
點評:本題主要考查二次函數(shù)的性質應用,體現(xiàn)了轉化、分類討論的數(shù)學思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在矩形ABCD中,AB=3,BC=4,PA⊥平面ABCD,且PA=1,則P到對角線BD的距離為( 。
A、
1
2
29
B、
13
5
C、
3
2
D、
3
2
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知θ∈(0,
π
2
),滿足cosθcos2θcos4θ=
1
8
的θ共有(  )個.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

斐波那契數(shù)列1,1,2,3,5,8,13,x,34,…中的x的值是(  )
A、19B、21C、26D、31

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
1+sinθ+cosθ
1+sinθ-cosθ
=
1
2
,則sin2θ+2cos2θ=( 。
A、
4
3
B、-
4
3
C、-
6
25
D、
6
25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在[-4,4]上的奇函數(shù),g(x)=f(x-2)+
1
3
.當x∈[-2,0)∪(0,2]時,g(x)=
1
2|x|-1
,g(0)=0,則方程g(x)=log 
1
2
(x+1)的解的個數(shù)為( 。
A、0B、2C、4D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
-2x+1,x≥0
4-x2,x<0
,則f(f(2))=(  )
A、4B、-5C、5D、-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a,b,c,d∈R,則下列命題中一定成立的是( 。
A、若a>b,c>d則a>c
B、若a>b,則ac>bc
C、若a>-b,則c-a<c+b
D、若a2>b2,則a>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解方程z2=
.
z
,其中z為復數(shù).

查看答案和解析>>

同步練習冊答案