極坐標(biāo)系中橢圓C的方程為
以極點(diǎn)為原點(diǎn),極軸為軸非負(fù)半軸,建立平面直角坐標(biāo)系,且兩坐標(biāo)系取相同的單位長度.
(Ⅰ)求該橢圓的直角標(biāo)方程;若橢圓上任一點(diǎn)坐標(biāo)為,求的取值范圍;
(Ⅱ)若橢圓的兩條弦交于點(diǎn),且直線與的傾斜角互補(bǔ),
求證:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和等于4,設(shè)點(diǎn)的軌跡為,直線與交于兩點(diǎn).
(1)寫出的方程;
(2) ,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓的左、右焦點(diǎn)分別為和,且橢圓過點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)作不與軸垂直的直線交該橢圓于兩點(diǎn),為橢圓的左頂點(diǎn),試判斷的大小是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知動圓C經(jīng)過點(diǎn)(0,m) (m>0),且與直線y=-m相切,圓C被x軸截得弦長的最小值為1,記該圓的圓心的軌跡為E.
(Ⅰ)求曲線E的方程;
(Ⅱ)是否存在曲線C與曲線E的一個公共點(diǎn),使它們在該點(diǎn)處有相同的切線?若存在,求出切線方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,曲線與曲線相交于、、、四個點(diǎn).
⑴ 求的取值范圍;
⑵ 求四邊形的面積的最大值及此時對角線與的交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,經(jīng)過點(diǎn)的動直線,與橢圓:()相交于,兩點(diǎn). 當(dāng)軸時,,當(dāng)軸時,.
(Ⅰ)求橢圓的方程;
(Ⅱ)若的中點(diǎn)為,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓的左頂點(diǎn)為,是橢圓上異于點(diǎn)的任意一點(diǎn),點(diǎn)與點(diǎn)關(guān)于點(diǎn)對稱.
(Ⅰ)若點(diǎn)的坐標(biāo)為,求的值;
(Ⅱ)若橢圓上存在點(diǎn),使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的離心率,是其左右焦點(diǎn),點(diǎn)是直線(其中)上一點(diǎn),且直線的傾斜角為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若 是橢圓上兩點(diǎn),滿足,求(為坐標(biāo)原點(diǎn))面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知過點(diǎn)的直線與拋物線交于兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)若以為直徑的圓經(jīng)過原點(diǎn),求直線的方程;
(2)若線段的中垂線交軸于點(diǎn),求面積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com