【題目】已知函數(shù),其中為實(shí)數(shù),為自然對數(shù)的底數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)是否存在實(shí)數(shù),使得對任意給定的,在區(qū)間上總存在三個不同的,使得成立?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請說明理由.

【答案】1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為2)存在,

【解析】

1)先對函數(shù)求導(dǎo),然后結(jié)合導(dǎo)數(shù)與單調(diào)性的關(guān)系即可求解,

2)結(jié)合(1)的討論,對進(jìn)行分類討論,即可求解.

解:(1

.

當(dāng),即時,.

.

當(dāng)時,;當(dāng)時,.

當(dāng),即時,.

.

當(dāng)時,;當(dāng)時,.

函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

2)由(1)可知,函數(shù)有兩個極小值,

存在一個極大值,另外.

對于函數(shù).

假設(shè)存在滿足題意的實(shí)數(shù).

當(dāng)時,,滿足題意.

當(dāng)時,.

由題意,解得.

當(dāng)時,.

由題意,解得.

綜上,實(shí)數(shù)的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱柱中,底面邊長為,側(cè)棱長為4,、分別為棱的中點(diǎn),

1)求直線與平面所成角的大。

2)求點(diǎn)到平面的距離;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓的左右焦點(diǎn)分別為,橢圓右頂點(diǎn)為,點(diǎn)在圓.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)點(diǎn)在橢圓上,且位于第四象限,點(diǎn)在圓上,且位于第一象限,已知,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng),證明;

2)如果函數(shù)有兩個極值點(diǎn)),且恒成立,求實(shí)數(shù)k的取值范圍.

3)當(dāng)時,求函數(shù)的零點(diǎn)個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為常數(shù),當(dāng)時,有三個極值點(diǎn),,(其中).

(1)求實(shí)數(shù)的取值范圍;

(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左頂點(diǎn)為,右焦點(diǎn)為,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點(diǎn),直線分別與軸交于點(diǎn),在軸上,是否存在點(diǎn),使得無論非零實(shí)數(shù)怎樣變化,總有為直角?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線和動直線.直線交拋物線兩點(diǎn),拋物線處的切線的交點(diǎn)為.

1)當(dāng)時,求以為直徑的圓的方程;

2)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由國家統(tǒng)計(jì)局提供的數(shù)據(jù)可知,2012年至2018年中國居民人均可支配收入(單位:萬元)的數(shù)據(jù)如下表:

年份

2012

2013

2014

2015

2016

2017

2018

年份代號

1

2

3

4

5

6

7

人均可支配收入

1.65

1.83

2.01

2.19

2.38

2.59

2.82

1)求關(guān)于的線性回歸方程(系數(shù)精確到0.01);

2)利用(1)中的回歸方程,分析2012年至2018年中國居民人均可支配收入的變化情況,并預(yù)測2019年中國居民人均可支配收入

附注:參考數(shù)據(jù):

參考公式:回歸直線方程的斜率和截距的最小二乘估計(jì)公式分別為: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若不等式時恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案