分析 (1)我們可計算出圓柱的底面半徑,代入圓柱表面積公式,即可得到答案;
(2)求出圓柱的外接球半徑,即可求該圓柱外接球的表面積和體積.
解答 解:(1)當圓柱內(nèi)接于圓錐時,圓柱的表面積最大.
設(shè)此時,圓柱的底面半徑為r,高為h′.
圓錐的高h=$\sqrt{16-4}$=2$\sqrt{3}$,
又∵h′=$\sqrt{3}$,
∴h′=$\frac{1}{2}$h.∴$\frac{r}{2}$=$\frac{2\sqrt{3}-\sqrt{3}}{2\sqrt{3}}$,∴r=1.
∴S表面積=2S底+S側(cè)=2πr2+2πrh′
=2π+2π×$\sqrt{3}$=2(1+$\sqrt{3}$)π.(6分)
(2)設(shè)圓柱的外接球半徑為R.$R=\frac{{\sqrt{7}}}{2}$,
∴S=7π$V=\frac{{7\sqrt{7}π}}{6}$(12分)
點評 本題考查的知識點是圓柱的表面積,其中根據(jù)已知條件,求出圓柱的底面半徑,是解答本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | ±$\frac{1}{2}$ | D. | ±$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | 2($\sqrt{3}$+1) | D. | 2($\sqrt{3}$-1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\sqrt{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,2] | B. | [$\frac{1}{2}$,2] | C. | [2,+∞) | D. | (0,$\frac{1}{2}$]∪[2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 10 | C. | 20 | D. | $-\frac{15}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com