(本題滿分14分).已知函數(shù)

(1)當(dāng)時(shí),函數(shù)取得極大值,求實(shí)數(shù)的值;

(2)已知函數(shù),在區(qū)間內(nèi)存在唯一,使得.設(shè)函數(shù)(其中),證明:對(duì)任意,都有

(3)已知正數(shù)滿足,求證:對(duì)任意的實(shí)數(shù),若時(shí),都有

 

(1);

(2)令

因?yàn)楹瘮?shù)在區(qū)間上可導(dǎo),則根據(jù)結(jié)論可知:存在使得

當(dāng)時(shí),,從而單調(diào)遞增,

當(dāng)時(shí),,從而單調(diào)遞減,

故對(duì)任意,都有

(3)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2015022406080041543147/SYS201502240608139941772956_DA/SYS201502240608139941772956_DA.020.png">且,

同理

由(Ⅱ)知對(duì)任意,都有,從而

【解析】

試題分析:(1)求出原函數(shù)的導(dǎo)函數(shù),由求出的值,再將的值代入原函數(shù),可得其導(dǎo)函數(shù),令導(dǎo)函數(shù)大于0和導(dǎo)函數(shù)小于0,可分別判斷函數(shù)的單調(diào)區(qū)間,進(jìn)而確定函數(shù)處取得極大值;(2)構(gòu)造輔助函數(shù),求導(dǎo)后得到,由已知函數(shù)在區(qū)間上可導(dǎo),則存在使得.又,則求出,然后內(nèi)的符號(hào)判斷其單調(diào)性,從而說(shuō)明對(duì)任意,都有;(3)根據(jù)已知條件利用作差法得到,然后結(jié)合第(2)問(wèn)的結(jié)論即可得出答案.

試題解析:(1)由題設(shè),函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2015022406080041543147/SYS201502240608139941772956_DA/SYS201502240608139941772956_DA.042.png">,且

所以,得,此時(shí).

當(dāng)時(shí),,函數(shù)在區(qū)間上單調(diào)遞增;

當(dāng)時(shí),,函數(shù)在區(qū)間上單調(diào)遞減.

函數(shù)處取得極大值,故

(2)令

.因?yàn)楹瘮?shù)在區(qū)間上可導(dǎo),則根據(jù)結(jié)論可知:存在使得

,

當(dāng)時(shí),,從而單調(diào)遞增,;

當(dāng)時(shí),,從而單調(diào)遞減,;

故對(duì)任意,都有

(3)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2015022406080041543147/SYS201502240608139941772956_DA/SYS201502240608139941772956_DA.020.png">且,

同理,

由(Ⅱ)知對(duì)任意,都有,從而

考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆湖北省襄陽(yáng)市高三階段性測(cè)試數(shù)學(xué)試卷(解析版) 題型:選擇題

等差數(shù)列,則( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆湖北省高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

若函數(shù)上既是奇函數(shù)又是增函數(shù),則的圖象是

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆湖北省高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

是R上周期為3的奇函數(shù),且已知.

.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆湖北省高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

的值為

A、 B、 C、 D、1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆湖北省高三期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)設(shè)命題:函數(shù)在區(qū)間[-1,1]上單調(diào)遞減;命題使等式成立,如果命題為真命題,為假命題,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆湖北省高三期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

如圖,的外接圓的圓心為,,則等于( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆湖北省高三期中考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

在△中,角所對(duì)的邊分別為,且

__________.若,則

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆湖北省高三上學(xué)期十月階段性考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

二維空間中圓的一維測(cè)度(周長(zhǎng)),二維測(cè)度(面積),觀察發(fā)現(xiàn);三維空間中球的二維測(cè)度(表面積),三維測(cè)度(體積),觀察發(fā)現(xiàn).已知四維空間中“超球”的三維測(cè)度,猜想其四維測(cè)度_________.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案