如圖所示,設(shè)l1∥l2∥l3,AB:BC=3:2,DF=10,則DE=
 

考點(diǎn):平行線分線段成比例定理
專題:立體幾何
分析:由已知條件得FE:ED=3:2,所以DE=
2
5
DF
,由此能求出結(jié)果.
解答: 解:如圖所示,
∵l1∥l2∥l3,AB:BC=3:2,
∴FE:ED=3:2,
∵DF=10,
∴DE=
2
5
DF
=
2
5
×10=4

故答案為:4.
點(diǎn)評(píng):本題考查線段長(zhǎng)的求法,是基礎(chǔ)題,解題時(shí)要注意平行線分線段成比例定理的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將半徑分別為2和1的兩個(gè)球完全裝入底面邊長(zhǎng)為4的正四棱柱容器中,則該容器的高至少為(  )
A、6
B、3+2
2
C、3+
7
D、3+
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直角坐標(biāo)系xOy和極坐標(biāo)系Ox的原點(diǎn)與極點(diǎn)重合,x軸正半軸與極軸重合,單位長(zhǎng)度相同,圓C的參數(shù)方程為
x=2cosθ
y=2sinθ+1
(θ為參數(shù)),直線l的極坐標(biāo)方程為θ=
π
4
(ρ∈R).
(1)求圓C及直線l的普通方程;
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),求
CA
CB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=k(x-1)ex+x2
(Ⅰ)當(dāng)時(shí)k=-
1
e
,求函數(shù)f(x)在點(diǎn)(1,1)處的切線方程;
(Ⅱ)若在y軸的左側(cè),函數(shù)g(x)=x2+(k+2)x的圖象恒在f(x)的導(dǎo)函數(shù)f′(x)圖象的上方,求k的取值范圍;
(Ⅲ)當(dāng)k≤-l時(shí),求函數(shù)f(x)在[k,1]上的最小值m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x+ax2+blnx,曲線y=f(x)過點(diǎn)P(1,0)且在點(diǎn)P處的切線斜率為2,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高校調(diào)查詢問了56名男女大學(xué)生在課余時(shí)間是否參加運(yùn)動(dòng),得到如表所示的數(shù)據(jù).從表中數(shù)據(jù)分析,有多大把握認(rèn)為大學(xué)生的性別與參加運(yùn)動(dòng)之間有關(guān)系.
參加運(yùn)動(dòng)不參加運(yùn)動(dòng)合計(jì)
男大學(xué)生20828
女大學(xué)生121628
合計(jì)322456

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三角形ABC中AB=3,AC=6,∠BAC=60°,D為BC中點(diǎn).
(1)試用向量
AB
AC
表示
BC
;
(2)求BC的長(zhǎng);
(3)求中線AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明下列等式:
(1)
cos(α-
π
2
)
sin(
2
+α)
•sin(α-2π)•cos(2π-α)=sin2α
(2)
tan(2π-α)•sin(-2π-α)•cos(6π-α)
sin(α+
2
)•cos(α+
2
)
=-tanα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是橢圓C上任一點(diǎn),點(diǎn)P到直線l1:x=-2的距離為d1,到點(diǎn)F(-1,0)的距離為d2,且
d
 
2
d1
=
2
2
.直線l與橢圓C交于不同兩點(diǎn)A、B(A,B都在x軸上方),且∠OFA+∠OFB=180°.
(1)求橢圓C的方程;
(2)當(dāng)A為橢圓與y軸正半軸的交點(diǎn)時(shí),求直線l方程;
(3)對(duì)于動(dòng)直線l,是否存在一個(gè)定點(diǎn),無論∠OFA如何變化,直線l總經(jīng)過此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案