若變量x,y滿足約束條件
x-y-1≤0
x≥1
x+y-3≤0
,則z=2x+y的最大值為
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,即可求最大值.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當(dāng)直線y=-2x+z經(jīng)過點(diǎn)A時(shí),直線y=-2x+z的截距最大,
此時(shí)z最大.
x-y-1=0
x+y-3=0
,解得
x=2
y=1
,即A(2,1),
代入目標(biāo)函數(shù)z=2x+y得z=2×2+1=4+1=5.
即目標(biāo)函數(shù)z=2x+y的最大值為5.
故答案為:5.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
-1,x>0
2-|x|+1,x≤0
,若關(guān)于x的方程f(x)+2x-k=0有且只有兩個(gè)不同的實(shí)根,則實(shí)數(shù)k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2+2x+3,x∈[-4,4]的單調(diào)增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

向量
a
、
b
在正方形網(wǎng)格中的位置如圖所示,設(shè)向量
c
a
-
b
,若
c
b
,則實(shí)數(shù)λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠ABC=90°,AD∥BC,且PA=AD=2,AB=BC=1,則PD與平面PAC所成的角大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次不等式ax2+bx+c>0的解集為{x|-2<x<3},則不等式cx2-bx+a<0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列的首項(xiàng)是-1,前n項(xiàng)和為Sn,如果
S10
S5
=
31
32
,則S4的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
i2+i3+i4
1+i
,則
.
z
=( 。
A、
1
2
+
1
2
i
B、
1
2
-
1
2
i
C、-
1
2
+
1
2
i
D、-
1
2
-
1
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P是△ABC內(nèi)任意一點(diǎn),S△ABC表示△ABC的面積,λ1=
S△PBC
S△ABC
,λ2=
S△PCA
S△ABC
,λ3=
S△PAB
S△ABC
,定義f(P)=( λ1,λ2,λ3),若G是△ABC的重心,f(Q)=(
1
6
,
1
3
,
1
2
),則( 。
A、點(diǎn)Q在△GAB內(nèi)
B、點(diǎn)Q在△GBC內(nèi)
C、點(diǎn)Q在△GCA內(nèi)
D、點(diǎn)Q與點(diǎn)G重合

查看答案和解析>>

同步練習(xí)冊(cè)答案