7.若函數(shù)f(x)對(duì)一切x∈R,都有f(x+2)=$\frac{1}{f(x)}$,且f(1)=-1,則f(5)=-1.

分析 直接利用已知條件,化簡(jiǎn)求解即可.

解答 解:函數(shù)f(x)對(duì)一切x∈R,都有f(x+2)=$\frac{1}{f(x)}$,且f(1)=-1,
則f(5)=$\frac{1}{f(3)}$=$\frac{1}{\frac{1}{f(1)}}$=-1.
故答案為:-1.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.用定義證明函數(shù)f(x)=3x-1在(-∞,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=loga(x+1),g(x)=loga(1-x)其中(a>0且a≠1).
(1)判斷f(x)-g(x)的奇偶性,并說明理由;
(2)求使f(x)-g(x)>0成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.解關(guān)于x的不等式:mx2-(2m+1)x+2>0(m∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx-3sin2x-cos2x+3.
(1)當(dāng)x∈(0,$\frac{π}{2}$)時(shí),求f(x)的值域;
(2)若△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足$\frac{a}$=$\sqrt{3}$,$\frac{sin(2A+C)}{sinA}$=2+2cos(A+C),求f(B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知0<k<4,直線l1:kx-2y-2k+8=0和直線${l_2}:2x+{k^2}y-4{k^2}-4=0$與兩坐標(biāo)軸圍成一個(gè)四邊形,求使這個(gè)四邊形面積取最小時(shí)的k的值及最小面積的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)$f(x)={log_a}({a-{a^x}})({0<a<1})$的反函數(shù)為f-1(x)
(1)判斷f(x)的單調(diào)性并證明;
(2)解關(guān)于x的不等式f-1(x2-2)<f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.命題“?k∈R,使直線y=kx+1與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{^{2}}$=1(b>0)無公共點(diǎn)”為假命題,則實(shí)數(shù)b的取值范圍是b≥1且b≠2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在正方體AC1中,求直線A1C1與直線B1C所成的角度.

查看答案和解析>>

同步練習(xí)冊(cè)答案