【題目】已知定義域為的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷函數(shù)的單調(diào)性(只寫出結(jié)論即可);
(3)若對任意的不等式恒成立,求實數(shù)的取值范圍.
【答案】(1),; (2)見解析; (3).
【解析】
(1)根據(jù)函數(shù)奇偶性得,,解得的值;最后代入驗證,(2)可舉例比較大小確定單調(diào)性,(3)根據(jù)函數(shù)奇偶性與單調(diào)性將不等式化簡為,再根據(jù)恒成立轉(zhuǎn)化為對應(yīng)函數(shù)最值問題,最后根據(jù)函數(shù)最值得結(jié)果.
(1) 在上是奇函數(shù),
∴,∴,∴,∴,
∴,∴,∴,∴,
經(jīng)檢驗知:,
∴,.
(2)由(1)可知,在上減函數(shù).
(3)對于恒成立,
對于恒成立,
在上是奇函數(shù),
對于恒成立,
又 在上是減函數(shù),
,即對于恒成立,
而函數(shù)在上的最大值為2,,
∴實數(shù)的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ( e為自然對數(shù)的底數(shù)),且f(3a﹣2)>f(a﹣1),則實數(shù)a的取值范圍為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點列An(an , bn)(n∈N*)均為函數(shù)y=ax(a>0,a≠1)的圖象上,點列Bn(n,0)滿足|AnBn|=|AnBn+1|,若數(shù)列{bn}中任意連續(xù)三項能構(gòu)成三角形的三邊,則a的取值范圍為( )
A.(0, )∪( ,+∞)
B.( ,1)∪(1, )
C.(0, )∪( ,+∞)
D.( ,1)∪(1, )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知全集U={1,2,3,4,5,6,7},集合A={1,3,7},B={x|x=log2(a+1),a∈A},則A∩B=( )
A.{1,3}
B.{5,6}
C.{4,5,6}
D.{4,5,6,7}
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , Sn=n2+2n,bn=anan+1cos(n+1)π,數(shù)列{bn} 的前n項和為Tn , 若Tn≥tn2對n∈N*恒成立,則實數(shù)t的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)已知是奇函數(shù),求常數(shù)m的值;
(2)畫出函數(shù)的圖象,并利用圖象回答:k為何值時,方程 無解?有一解?有兩解?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以平面直角坐標系的原點為極點, 軸正半軸為極軸建立極坐標系,已知圓的極坐標方程為,直線的參數(shù)方程為(為參數(shù)),若與交于兩點.
(Ⅰ)求圓的直角坐標方程;
(Ⅱ)設(shè),求的值.
【答案】(1);(2)1.
【解析】試題分析:(1)先根據(jù) 將圓的極坐標方程化為直角坐標方程;(2)先將直線參數(shù)方程調(diào)整化簡,再將直線參數(shù)方程代入圓直角坐標方程,根據(jù)參數(shù)幾何意義得,最后利用韋達定理求解
試題解析:(Ⅰ)由,得,
(Ⅱ)把,
代入上式得,
∴,則, ,
.
【題型】解答題
【結(jié)束】
23
【題目】證明:(Ⅰ)已知是正實數(shù),且.求證: ;
(Ⅱ)已知,且, , .求證: 中至少有一個是負數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的離心率 ,過點A(0,﹣b)和B(a,0)的直線與原點的距離為 .
(1)求橢圓的方程;
(2)已知定點E(﹣1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點,問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點.
(1)證明:BE⊥DC;
(2)求直線BE與平面PBD所成角的正弦值;
(3)若F為棱PC上一點,滿足BF⊥AC,求二面角F-AB-P的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com