3.已知數(shù)列{an}的前n項(xiàng)和為Sn=n2-2n-1,求這個(gè)數(shù)列的通項(xiàng)公式.

分析 在數(shù)列的前n項(xiàng)和中,取n=1求得首項(xiàng),再由an=Sn-Sn-1求得n≥2時(shí)的通項(xiàng)公式,驗(yàn)證首項(xiàng)后得答案.

解答 解:當(dāng)n=1時(shí),a1=s1=-2;
當(dāng)n≥2時(shí),
an=Sn-Sn-1
=(n2-2n-1)-[(n-1)2-2(n-1)-1]
=(n2-2n-1)-(n2-4n+2)
=2n-3.
當(dāng)n=1時(shí),a1=-2,不適合上式
∴數(shù)列的通項(xiàng)公式為${a_n}=\left\{\begin{array}{l}-2,n=1\\ 2n-3,n≥2\end{array}\right.$.

點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查了利用數(shù)列的前n項(xiàng)和求數(shù)列的通項(xiàng)公式,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓中心E在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過A(-2,0)、B(2,0)、$C({1,\frac{3}{2}})$三點(diǎn).
(1)求橢圓E的方程:
(2)若點(diǎn)D為橢圓E上不同于A、B的任意一點(diǎn),F(xiàn)(-1,0),H(1,0),當(dāng)△DFH內(nèi)切圓的面積最大時(shí),求內(nèi)切圓圓心的坐標(biāo);
(3)若直線l:y=k(x-1)(k≠0)與橢圓E交于M、N兩點(diǎn),證明直線AM與直線BN的交點(diǎn)在直線x=4上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C滿足:過橢圓C的右焦點(diǎn)F($\sqrt{2}$,0)且經(jīng)過短軸端點(diǎn)的直線的傾斜角為$\frac{π}{4}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),若點(diǎn)A在直線y=2上,點(diǎn)B在橢圓C上,且OA⊥OB,求線段AB長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合M={1,2,3},N={2,3},則( 。
A.M=NB.M∩N=∅C.M⊆ND.N?M

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)在R上的導(dǎo)函數(shù)是f′(x),并且滿足xf′(x)<0,若a=f(0.33),b=f(log2$\sqrt{3}$),c=f(log3$\sqrt{2}$),則( 。
A.a>b>cB.a>c>bC.b>a>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}的首項(xiàng)a1=1,且an+1=2an+λ(n∈N+,λ∈R).
(1)試問數(shù)列{an+λ}是否為等比數(shù)列?若是,請(qǐng)求出數(shù)列{an}的通項(xiàng)公式;若不是,請(qǐng)說明理由;
(2)當(dāng)λ=1時(shí),記bn=$\frac{n}{{a}_{n}+1}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…+$\frac{{x}^{2015}}{2015}$;g(x)=1-x+$\frac{{x}^{2}}{2}$-$\frac{{x}^{3}}{3}$+$\frac{{x}^{4}}{4}$-…-$\frac{{x}^{2015}}{2015}$;設(shè)函數(shù)F(x)=[f(x+3)]•[g(x-4)],且函數(shù)F(x)的零點(diǎn)均在區(qū)間[a,b](a<b,a,b∈Z)內(nèi),則b-a的最小值為( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x-2x-b(b為常數(shù)),則f(-1)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知O(0,0,0),A(-2,2,-2),B(1,4,-6),C(x,-8,8),若OC⊥AB,則x=16;若O、A、B、C四點(diǎn)共面,則x=8.

查看答案和解析>>

同步練習(xí)冊(cè)答案