精英家教網 > 高中數學 > 題目詳情
對于定義在集合D上的函數y=f(x),若f(x)在D上具有單調性且存在區(qū)間[a,b]⊆D(其中a<b)使當x∈[a,b]時,f(x)的值域是[a,b],則稱函數f(x)是D上的“正函數”,區(qū)間[a,b]稱為f(x)的“等域區(qū)間”.
(1)已知函數f(x)=x3是正函數,試求f(x)的所有等域區(qū)間;
(2)若g(x)=
x+2
+k
是正函數,試求實數k的取值范圍;
(3)是否存在實數a,b(a<b<1)使得函數f(x)=|1-
1
x
|
是[a,b]上的“正函數”?若存在,求出區(qū)間[a,b],若不存在,說明理由.
分析:(1)根據導數符號可知f(x)=x3在R上是增函數,則x∈[a,b]時,f(x)的值域為[a3,b3],最后根據f(x)=x3是正函數建立等式關系,解之即可求出所求;
(2)g(x)=
x+2
+k
在[-2,+∞)上是增函數,則x∈[a,b]時,f(x)的值域為[g(a),g(b)],根據g(x)=
x+2
+k
是正函數,建立等式關系,即k=(
x+2
)2-
x+2
-2
有兩個不等的實根,數形結合即可求出k的范圍;
(3)假設存在區(qū)間[a,b],使得x∈[a,b]時,H(x)=|1-
1
x
|
的值域為[a,b],討論當a<b<0時與當0<a<b<1時是否存在實數a、b即可.
解答:解:(1)∵f′(x)=3x2≥0
∴f(x)=x3在R上是增函數
則x∈[a,b]時,f(x)的值域為[a3,b3]
又f(x)=x3是正函數
a=a3
b=b3
b>a
解得
a=0
b=1
a=-1
b=0
a=-1
b=1

故f(x)的等域區(qū)間有三個:[0,1],[-1,0],[-1,1]…(5分)
(2)∵g(x)=
x+2
+k
在[-2,+∞)上是增函數
∴x∈[a,b]時,f(x)的值域為[g(a),g(b)]
g(x)=
x+2
+k
是正函數,則有
g(a)=b
g(b)=b
a=
a+2
+k
b=
b+2
+k

故方程x=
x+2
+k
有兩個不等的實根.…(7分)
k=(
x+2
)2-
x+2
-2
有兩個不等的實根
x+2
=t≥0,h(t)=t2-t-2=(t-
1
2
)2-
9
4
(t≥0)

數形結合知:k∈(-
9
4
,-2]
…(9分)
(3)假設存在區(qū)間[a,b],使得x∈[a,b]時,H(x)=|1-
1
x
|
的值域為[a,b],又0∉[a,b]故ab>0
當a<b<0時,H(x)=1-
1
x
在[a,b]上單增.
a=1-
1
a
b=1-
1
b
⇒a,b
是方程x=1-
1
x
的兩負根
又方程x2-x+1=0無解
故此時不存在…(11分)
當0<a<b<1時,H(x)=
1
x
-1
在[a,b]上單減
a=
1
b
-1
b=
1
a
-1
ab=1-b
ab=1-a
⇒a=b,又a<b

故此時不存在…(13分)
綜上可知:不存在實數a<b<1使得f(x)的定義域和值域均為[a,b]…(14分)
點評:本題主要考查了函數值域的求解,以及利用函數的單調性求函數的值域,同時考查了分類討論的思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

對于定義在集合D上的函數y=f(x),若f(x)在D上具有單調性,且存在區(qū)間[a,b]⊆D,使當x∈[a,b]時,f(x)的值域是[a,b],則稱函數f(x)是D上的正函數,區(qū)間[a,b]稱為f(x)的“等域區(qū)間”.已知函數f(x)=
x
是[0,+∞)上的正函數,則f(x)的等域區(qū)間為
[0,1]
[0,1]

查看答案和解析>>

科目:高中數學 來源: 題型:

對于定義在集合D上的函數y=f(x),若f(x)在D上具有單調性,且存在區(qū)間[a,b]⊆D(其中a<b),使當x∈[a,b]時,
f(x)的值域是[a,b],則稱函數f(x)是D上的正函數,區(qū)間[a,b]稱為f(x)的“等域區(qū)間”.
(1)已知函數f(x)=
x
是[0,+∞)上的正函數,試求f(x)的等域區(qū)間.
(2)試探究是否存在實數k,使函數g(x)=x2+k是(-∞,0)上的正函數?若存在,求出k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年福建省三明九中高三(上)第一次段考數學試卷(文科)(解析版) 題型:填空題

對于定義在集合D上的函數y=f(x),若f(x)在D上具有單調性,且存在區(qū)間[a,b]⊆D,使當x∈[a,b]時,f(x)的值域是[a,b],則稱函數f(x)是D上的正函數,區(qū)間[a,b]稱為f(x)的“等域區(qū)間”.已知函數f(x)=是[0,+∞)上的正函數,則f(x)的等域區(qū)間為   

查看答案和解析>>

科目:高中數學 來源:2013年高考數學復習卷D(二)(解析版) 題型:解答題

對于定義在集合D上的函數y=f(x),若f(x)在D上具有單調性,且存在區(qū)間[a,b]⊆D(其中a<b),使當x∈[a,b]時,
f(x)的值域是[a,b],則稱函數f(x)是D上的正函數,區(qū)間[a,b]稱為f(x)的“等域區(qū)間”.
(1)已知函數是[0,+∞)上的正函數,試求f(x)的等域區(qū)間.
(2)試探究是否存在實數k,使函數g(x)=x2+k是(-∞,0)上的正函數?若存在,求出k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案