已知a<0,直線l1:2x+ay=2,l2:a2x+2y=1,若l1⊥l2,則a=
 
考點:直線的一般式方程與直線的垂直關系
專題:直線與圓
分析:利用相互垂直的直線與斜率之間的關系即可得出.
解答: 解:兩條直線的斜率分別為:-
2
a
,-
a2
2

∵l1⊥l2,
-
2
a
×(-
a2
2
)
=-1,
解得a=-1.
故答案為:-1.
點評:本題考查了相互垂直的直線與斜率之間的關系,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知
a
=(sin
3
,cos
3
),
b
=(-sin
3
,cos
3
),且θ∈[0,
π
3
].
(1)求
a
b
|
a
+
b
|
的最值; 
(2)若|k
a
+
b
|=
3
|
a
-k
b
|(k∈R),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

小貓在如圖1所示的地板磚上隨意地走來走去,然后隨意停留在某塊磚上,則停在三角形磚上的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

1
0
(x2-2k)dx=1,則k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

與直線l:3x-4y-1=0平行且到直線l的距離為2的直線方程是(  )
A、3x-4y-11=0或3x-4y+9=0
B、3x-4y-11=0
C、3x-4y+11=0或3x-4y-9=0
D、3x-4y+9=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函數(shù),其圖象關于點M(
4
,0)對稱,且在區(qū)間[0,
π
2
]上是單調函數(shù),
(1)求φ和ω的值;
(2)已知對任意x∈R函數(shù)g(x)滿足g(π+x)=g(π-x),且當x∈(0,π)時,g(x)=f(x),試求:g(
2
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若由表格中的數(shù)據可以判定方程ex-x-2=0的一個零點所在的區(qū)間為(k,k+1)(k∈N),則實數(shù)k的值為
 

x-10123
ex0.3712.727.3920.09
x+212345

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解不等式:log4(x2-4x-5)
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設z=2x+y,其中變量x,y滿足條件
4≤x+y≤6
2≤x-y≤4
,則z的最大值和最小值分別為( 。
A、11,7B、-7.-9
C、11,6D、7,1

查看答案和解析>>

同步練習冊答案