雙曲線C:
x2
a2
-
y2
b2
=1
的左右焦點分別為F1、F2,過F1的直線與雙曲線左右兩支分別交于A、B兩點,若△ABF2是等邊三角形,則雙曲線C的離心率為
7
7
分析:根據(jù)雙曲線的定義算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等邊三角形得∠F1AF2=120°,利用余弦定理算出c=
7
a,結(jié)合雙曲線離心率公式即可算出雙曲線C的離心率.
解答:解:根據(jù)雙曲線的定義,可得|BF1|-|BF2|=2a,
∵△ABF2是等邊三角形,即|BF2|=|AB|
∴|BF1|-|BF2|=2a,即|BF1|-|AB|=|AF1|=2a
又∵|AF2|-|AF1|=2a,
∴|AF2|=|AF1|+2a=4a,
∵△AF1F2中,|AF1|=2a,|AF2|=4a,∠F1AF2=120°
∴|F1F2|2=|AF1|2+|AF2|2-2|AF1|•|AF2|cos120°
即4c2=4a2+16a2-2×2a×4a×(-
1
2
)=28a2,解之得c=
7
a,
由此可得雙曲線C的離心率e=
c
a
=
7

故答案為:
7
點評:本題給出經(jīng)過雙曲線左焦點的直線被雙曲線截得弦AB與右焦點構(gòu)成等邊三角形,求雙曲線的離心率,著重考查了雙曲線的定義和簡單幾何性質(zhì)等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0)
的一條漸近線與拋物線x=y2的一個交點的橫坐標(biāo)為
x
 
0
,若
x
 
0
1
2
,則雙曲線C的離心率的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•蘭州模擬)已知F為雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦點,P為雙曲線C右支上一點,且位于x軸上方,M為直線x=-
a2
c
上一點,O為坐標(biāo)原點,已知
OP
=
OF
+
OM
,且|
OF
|=|
OM
|
,則雙曲線C的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線C:
x2
a2
-
y2
b2
=1
(b>a>0)的左、右焦點分別為F1,F(xiàn)2.若在雙曲線的右支上存在一點P,使得|PF1|=3|PF2|,則雙曲線C的離心率e的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•浙江模擬)設(shè)雙曲線C:
x2
a2
-
y2
b2
=1
(a>b>0)的右焦點為F,左右頂點分別為A1,A2,過F且與雙曲線C的一條漸近線平行的直線與另一條漸近線相交于P,若P恰好在以A1A2為直徑的圓上,則雙曲線的離心率為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P為雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的漸近線在第一象限內(nèi)的部分上一動點,F(xiàn)為雙曲線C的右焦點,A為雙曲線C的右準(zhǔn)線與x軸的交點,e是雙曲線C的離心率,則∠APF的余弦的最小值為( 。

查看答案和解析>>

同步練習(xí)冊答案