【題目】某生活超市有一專柜預(yù)代理銷售甲乙兩家公司的一種可相互替代的日常生活用品.經(jīng)過一段時(shí)間分別單獨(dú)試銷甲乙兩家公司的商品,從銷售數(shù)據(jù)中隨機(jī)各抽取50天,統(tǒng)計(jì)每日的銷售數(shù)量,得到如下的頻數(shù)分布條形圖.甲乙兩家公司給該超市的日利潤(rùn)方案為:甲公司給超市每天基本費(fèi)用為90元,另外每銷售一件提成1元;乙公司給超市每天的基本費(fèi)用為130元,每日銷售數(shù)量不超過83件沒有提成,超過83件的部分每件提成10元.

(Ⅰ)求乙公司給超市的日利潤(rùn)(單位:元)與日銷售數(shù)量的函數(shù)關(guān)系;

(Ⅱ)若將頻率視為概率,回答下列問題:

1)求甲公司產(chǎn)品銷售數(shù)量不超過87件的概率;

2)如果僅從日均利潤(rùn)的角度考慮,請(qǐng)你利用所學(xué)過的統(tǒng)計(jì)學(xué)知識(shí)為超市作出抉擇,選擇哪家公司的產(chǎn)品進(jìn)行銷售?并說明理由.

【答案】(Ⅰ);(Ⅱ)(1;(2)超市應(yīng)代理銷售乙公司的產(chǎn)品較為合適.

【解析】

(Ⅰ)分別在兩種情況下得到關(guān)系式,進(jìn)而得到結(jié)果;

(Ⅱ)(1)利用頻率的計(jì)算方式可求得對(duì)應(yīng)的概率;

(2)分別計(jì)算甲、乙兩公司給到超市的日利潤(rùn)的平均數(shù),選擇平均數(shù)較大的產(chǎn)品進(jìn)行銷售.

(Ⅰ)當(dāng)時(shí),元;

當(dāng)時(shí),;

乙公司給超市的日利潤(rùn)(單位:元)與銷售數(shù)量的函數(shù)關(guān)系為:.

(Ⅱ)(1)記事件:“甲公司產(chǎn)品的銷售數(shù)量不超過87件”,

;

2)甲公司給超市的日利潤(rùn)為元,

的所有可能取值為,,,,

(元);

設(shè)乙公司給超市的日利潤(rùn)為元,

的所有可能取值為,,,,

(元);

,所以超市應(yīng)代理銷售乙公司的產(chǎn)品較為合適.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中,并給出解答.

設(shè)等差數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,________,若對(duì)于任意都有,且(為常數(shù)),求正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù)),曲線的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程;

2)射線與曲線,分別交于點(diǎn),(且點(diǎn),均異于原點(diǎn)),當(dāng)時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)若方程f(x)=m有4個(gè)不同的實(shí)根x1,x2,x3,x4,且x1<x2<x3<x4,則()(x3+x4)=( 。

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,,,O為線段CD的中點(diǎn),將沿BO折到 的位置,使得E的中點(diǎn).

1)求證:;

2)求直線AE與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)的圖像與的圖像交于不同的兩點(diǎn),線段的中點(diǎn)為

1)求實(shí)數(shù)的取值范圍;

2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在三棱柱中,側(cè)面為菱形,,,側(cè)面為正方形,平面平面.點(diǎn)為線段的中點(diǎn),點(diǎn)在線段上,且.

1)證明:平面平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】每年的312日是植樹節(jié),某公司為了動(dòng)員職工積極參加植樹造林,在植樹節(jié)期間開展植樹有獎(jiǎng)活動(dòng),設(shè)有甲、乙兩個(gè)摸獎(jiǎng)箱,每位植樹者植樹每滿30棵獲得一次甲箱內(nèi)摸獎(jiǎng)機(jī)會(huì),植樹每滿50棵獲得一次乙箱內(nèi)摸獎(jiǎng)機(jī)會(huì),每箱內(nèi)各有10個(gè)球(這些球除顏色外全相同),甲箱內(nèi)有紅、黃、黑三種顏色的球,其中個(gè)紅球,個(gè)黃球,5個(gè)黑球,乙箱內(nèi)有4個(gè)紅球和6個(gè)黃球,每次摸一個(gè)球后放回原箱,摸得紅球獎(jiǎng)100元,黃球獎(jiǎng)50元,摸得黑球則沒有獎(jiǎng)金.

1)經(jīng)統(tǒng)計(jì),每人的植樹棵數(shù)服從正態(tài)分布,若其中有200位植樹者參與了抽獎(jiǎng),請(qǐng)估計(jì)植樹的棵數(shù)在區(qū)間內(nèi)并中獎(jiǎng)的人數(shù)(結(jié)果四舍五入取整數(shù));

附:若,則,

2)若,某位植樹者獲得兩次甲箱內(nèi)摸獎(jiǎng)機(jī)會(huì),求中獎(jiǎng)金額(單位:元)的分布列;

3)某人植樹100棵,有兩種摸獎(jiǎng)方法,

方法一:三次甲箱內(nèi)摸獎(jiǎng)機(jī)會(huì);

方法二:兩次乙箱內(nèi)摸獎(jiǎng)機(jī)會(huì);

請(qǐng)問:這位植樹者選哪一種方法所得獎(jiǎng)金的期望值較大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,斜三棱柱中,是邊長(zhǎng)為2的正三角形,的中點(diǎn),平面,點(diǎn)上,,的交點(diǎn),且與平面所成的角為

1)求證:平面;

2)求二面角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案