【題目】一種設(shè)備的單價(jià)為元,設(shè)備維修和消耗費(fèi)用第一年為元,以后每年增加元(是常數(shù)).用表示設(shè)備使用的年數(shù),記設(shè)備年平均費(fèi)用為,即 (設(shè)備單價(jià)設(shè)備維修和消耗費(fèi)用)設(shè)備使用的年數(shù).
(Ⅰ)求關(guān)于的函數(shù)關(guān)系式;
(Ⅱ)當(dāng), 時(shí),求這種設(shè)備的最佳更新年限.
【答案】(Ⅰ);(Ⅱ)15年
【解析】試題分析:
(Ⅰ)由題意可知設(shè)備維修和消耗費(fèi)用構(gòu)成以為首項(xiàng), 為公差的等差數(shù)列,結(jié)合等差數(shù)列前n項(xiàng)和公式可得
(Ⅱ)由題意結(jié)合均值不等式的結(jié)論有,則,當(dāng)且僅當(dāng)時(shí),年平均消耗費(fèi)用取得最小值,即設(shè)備的最佳更新年限是15年.
試題解析:
(Ⅰ)由題意,設(shè)備維修和消耗費(fèi)用構(gòu)成以為首項(xiàng), 為公差的等差數(shù)列,
因此年維修消耗費(fèi)用為
于是
(Ⅱ)∵,所以
, ,
當(dāng)且僅當(dāng),即, 時(shí),年平均消耗費(fèi)用取得最小值
所以設(shè)備的最佳更新年限是15年
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(cosx,sinx), =(3,﹣ ),x∈[0,π].
(Ⅰ)若 ∥ ,求x的值;
(Ⅱ)記f(x)= ,求f(x)的最大值和最小值以及對應(yīng)的x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x<1},B={x|3x<1},則( 。
A.A∩B={x|x<0}
B.A∪B=R
C.A∪B={x|x>1}
D.A∩B=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列命題:
①“”是“”的充要條件;
②“”是“一元二次不等式的解集為R”的充要條件;
③“”是“直線平行于直線”的充分不必要條件;
④“”是“”的必要不充分條件.
其中真命題的序號為____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,分別是的中點(diǎn).
(1)求證:平面;
(2)過點(diǎn)作一個(gè)截面,使平面平面,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓形紙片的圓心為O,半徑為5cm,該紙片上的等邊三角形ABC的中心為O.D、E、F為圓O上的點(diǎn),△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形.沿虛線剪開后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱錐.當(dāng)△ABC的邊長變化時(shí),所得三棱錐體積(單位:cm3)的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】去年年底,某商業(yè)集團(tuán)公司根據(jù)相關(guān)評分細(xì)則,對其所屬25家商業(yè)連鎖店進(jìn)行了考核評估.將各連鎖店的評估分?jǐn)?shù)按[60,70), [70,80), [80,90), [90,100),分成四組,其頻率分布直方圖如下圖所示,集團(tuán)公司依據(jù)評估得分,將這些連鎖店劃分為A,B,C,D四個(gè)等級,等級評定標(biāo)準(zhǔn)如下表所示.
評估得分 | [60,70) | [70,80) | [80,90) | [90,100) |
評定等級 | D | C | B | A |
(1)估計(jì)該商業(yè)集團(tuán)各連鎖店評估得分的眾數(shù)和平均數(shù);
(2)從評估分?jǐn)?shù)不小于80分的連鎖店中任選2家介紹營銷經(jīng)驗(yàn),求至少選一家A等級的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有數(shù)列1,2,2,3,3,3,4,4,4,4,….
(1)問10是該數(shù)列的第幾項(xiàng)到第幾項(xiàng)?
(2)求第100項(xiàng).
(3)求前100項(xiàng)的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某旅游區(qū)擬建一主題游樂園,該游樂區(qū)為五邊形區(qū)域ABCDE,其中三角形區(qū)域ABE為主題游樂區(qū),四邊形區(qū)域?yàn)锽CDE為休閑游樂區(qū),AB、BC,CD,DE,EA,BE為游樂園的主要道路(不考慮寬度).∠BCD=∠CDE=120°,∠BAE=60°,DE=3BC=3CD=3km.
(1)求道路BE的長度;
(2)求道路AB,AE長度之和的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com