分別是橢圓: ()的左、右焦點,過斜率為1的直線與該橢圓相交于P,Q兩點,且,,成等差數(shù)列.
(Ⅰ)求該橢圓的離心率;
(Ⅱ)設點M(0,-1)滿足|MP|=|MQ|,求該橢圓的方程.
(Ⅰ)由橢圓定義知|PF2|+|QF2|+|PQ|=4a,
又2|PQ|=|PF2|+|QF2|,得|PQ|=a.
l的方程為y=x+c, 其中c=.
設P(x1,y1),Q(x2,y2),則P,Q兩點坐標滿足方程組

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的離心率,長軸的左右兩個端點分別為
(1)求橢圓C的方程;
(2)點在該橢圓上,且,求點軸的距離;
(3)過點(1,0)且斜率為1的直線與橢圓交于P,Q兩點,求△OPQ的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,已知焦距為4的橢圓的左、右頂點分別為,橢圓的右焦點為,過作一條垂直于軸的直線與橢圓相交于,若線段的長為。
(1)求橢圓的方程;
(2)設是直線上的點,直線與橢圓分別交于點,求證:直線必過軸上的一定點,并求出此定點的坐標;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓的離心率,右焦點到直線的距離為,過的直線交橢圓于兩點.(Ⅰ) 求橢圓的方程;(Ⅱ) 若直線軸于,,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線與橢圓交于A、B兩點,點F為拋物線
的焦點,若∠AFB=,則橢圓的離心率為                          
A、        B、        C、        D、

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的焦點為,點在橢圓上,若,則___.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過橢圓()的左焦點軸的垂線交橢圓于點為右焦點,若,則橢圓的離心率為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓上的點到右焦點F的最小距離是,到上頂點的距離為,點是線段上的一個動點.
(I)求橢圓的方程;
(Ⅱ)是否存在過點且與軸不垂直的直線與橢圓交于、兩點,使得,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知AB是過橢圓=1左焦點F1的弦,且,其中 是橢圓的右焦點,則弦AB的長是_______

查看答案和解析>>

同步練習冊答案