橢圓
的離心率
,右焦點到直線
的距離為
,過
的直線
交橢圓于
兩點.(Ⅰ) 求橢圓的方程;(Ⅱ) 若直線
交
軸于
,
,求直線
的方程.
(Ⅰ)設右焦點為
,則
(Ⅱ)設
,
,
,因為
,所以
…① ……7分
易知當直線
的斜率不存在或斜率為0時①不成立,于是設
的方程為
,
由①③得,
代入④整理得
,于是
,
此時
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的右焦點為
且
,設短軸的一個端點為
,原點
到直線
的距離為
,過原點和
軸不重合的直線與橢圓
相交于
兩點,且
.
(1) 求橢圓
的方程;
(2) 是否存在過點
的直線
與橢圓
相交于不同的兩點
且使得
成立?若存在,試求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)已知橢圓
的離心率為
,以原點為圓心,橢圓短半軸長為半徑的圓與直線
相切,
分別是橢圓的左右兩個頂點,
為橢圓
上的動點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若
與
均不重合,設直線
與
的斜率分別為
,證明:
為定值;
(Ⅲ)
為過
且垂直于
軸的直線上的點,若
,求點
的軌跡方程,并說明軌跡是什么曲線.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,把橢圓
的長軸
分成
等份,過每個分點作
軸的垂線交橢圓的上半部分于
七個點,
是橢圓的一個焦點,則
( ).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若橢圓的兩焦點是
,
,且該橢圓過點
,則該橢圓的標準方程是_______________
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設
分別是橢圓:
(
)的左、右焦點,過
斜率為1的直線
與該橢圓相交于P,Q兩點,且
,
,
成等差數(shù)列.
(Ⅰ)求該橢圓的離心率;
(Ⅱ)設點M(0,-1)滿足|MP|=|MQ|,求該橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
等軸雙曲線
C與橢圓
有公共的焦點,則雙曲線
C的方程為____________。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖,
O為原點,從橢圓
的左焦點
F引圓
的切線
FT交橢圓于點
P,切點
T位于
F、P之間,
M為線段
FP的中點,
M位于
F、T之間,則
的值為_____________
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若橢圓
的一個焦點坐標為(0,1),則實數(shù)
的值等于_____
____,
查看答案和解析>>