已知以橢圓=1(ab>0)的右焦點F為圓心,a為半徑的圓與橢圓的右準線交于不同的兩點,則該橢圓的離心率的取值范圍是

[  ]

A.

B.

C.

D.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:全優(yōu)設計選修數(shù)學-1-1蘇教版 蘇教版 題型:013

已知P是以F1、F2為焦點的橢圓=1(a>b>0)上一點,若=0,tan∠PF1F2=2,則該橢圓的離心率為

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學 來源:黃岡重點作業(yè)·高三數(shù)學(下) 題型:013

已知雙曲線=1和橢圓=1(a>0,m>b>1)的離心率互為倒數(shù),那么以a、b、m為邊長的三角形一定是

[  ]

A.銳角非等腰三角形

B.直角三角形

C.鈍角非等腰三角形

D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河北省高三3月月考數(shù)學試卷(解析版) 題型:解答題

如圖,已知橢圓=1(a>b>0)的離心率為,以該橢圓上的點和橢圓的左、右焦點F1、F2為頂點的三角形的周長為4(+1),一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.

(1)求橢圓和雙曲線的標準方程;

(2)設直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;

(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知橢圓=1(ab>0)的離心率為,以該橢圓上的點和橢圓的左、右焦點F1、F2為頂點的三角形的周長為4(+1),一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1PF2與橢圓的交點分別為A、BC、D.

(1)求橢圓和雙曲線的標準方程;

(2)設直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;

(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案