若數(shù)列{an}滿足:a1=1,an+1=2an(n∈N+),則a5=
16
16
分析:(法一):由an+1=2an,a1=1可得數(shù)列{an}是以1為首項(xiàng),以2為公比的等比數(shù)列,由等比數(shù)列的通項(xiàng)公式可求an,然后把n=5代入到通項(xiàng)中即可求
(法二):由an+1=2an=22an-1=23an-2=…=2na1=2n可求an,然后把n=5代入到通項(xiàng)中即可求
解答:解:(法一):∵an+1=2an,a1=1
an+1
an
=2

∴數(shù)列{an}是以1為首項(xiàng),以2為公比的等比數(shù)列
由等比數(shù)列的通項(xiàng)公式可得,an=2n-1
∴a5=24=16
(法二):∵an+1=2an=22an-1=23an-2=…=2na1=2n
∴an=2n-1
a5=24=16
故答案為:16
點(diǎn)評(píng):本題主要考查了利用數(shù)列的遞推公式求解數(shù)列的項(xiàng),解題的關(guān)鍵是由已知遞推公式求解出數(shù)列的通項(xiàng)公式,要主要掌握解答本題中用的方法:等比數(shù)列的通項(xiàng)公式及迭代的方法
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}滿足a1=1,an+1=2an+n,則通項(xiàng)an=
3×2n-1-n-1
3×2n-1-n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m>3,對(duì)于數(shù)列{an} (n=1,2,…,m,…),令bk為a1,a2,…,ak中的最大值,稱數(shù)列 {bn} 為{an} 的“遞進(jìn)上限數(shù)列”.例如數(shù)列2,1,3,7,5的遞進(jìn)上限數(shù)列為2,2,3,7,7.則下面命題中
①若數(shù)列{an} 滿足an+3=an,則數(shù)列{an} 的遞進(jìn)上限數(shù)列必是常數(shù)列;
②等差數(shù)列{an} 的遞進(jìn)上限數(shù)列一定仍是等差數(shù)列
③等比數(shù)列{an} 的遞進(jìn)上限數(shù)列一定仍是等比數(shù)列
正確命題的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•煙臺(tái)二模)若數(shù)列{an}滿足an+12-
a
2
n
=d
(d為正常數(shù),n∈N+),則稱{an}為“等方差數(shù)列”.甲:數(shù)列{an}為等方差數(shù)列;乙:數(shù)列{an}為等差數(shù)列,則甲是乙的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•濰坊二模)已知函數(shù)f(x)=ax-
ln(1+x)
1+x
在x=0處取得極值.
(I)求實(shí)數(shù)a的值,并判斷,f(x)在[0,+∞)上的單調(diào)性;
(Ⅱ)若數(shù)列{an}滿足a1=1,an+1=f(an),求證:0<an+1<an≤l;
(Ⅲ)在(II)的條件.下,記sn=
a1
1+a1
+
a1a2
(1+a1)(1+a2)
+…+
a1a2an
(1+a1)(1+a2)…(1+an)
,求證:sn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x
x+1
,若數(shù)列{an}滿足:an>0,a1=1,an+1=[f(
an
)]2
(I)求數(shù)列{an}的通項(xiàng)公式數(shù)列an;
(II)若數(shù)列{an}的前n項(xiàng)和為Sn,證明:Sn<2.

查看答案和解析>>

同步練習(xí)冊(cè)答案