(本題滿分12分)
已知函數(shù)在點處的切線方程為
⑴求函數(shù)的解析式;
⑵若對于區(qū)間上任意兩個自變量的值都有,求實數(shù)的最小值;

.⑵的最小值為4.

解析試題分析:⑴
根據(jù)題意,得解得 所以
⑵令,即.得

因為,,所以當時,
則對于區(qū)間上任意兩個自變量的值,都有
,所以
所以的最小值為4.
考點:本題主要考查導數(shù)的幾何意義,應用導數(shù)研究函數(shù)的單調(diào)性及極值。
點評:典型題,本題屬于導數(shù)應用中的基本問題,像“恒成立”這類問題,往往要轉化成求函數(shù)的最值問題,然后解不等式。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
設函數(shù),曲線在點處的切線方程
(1)求的解析式,并判斷函數(shù)的圖像是否為中心對稱圖形?若是,請求其對稱中心;否則說明理由。
(2)證明:曲線上任一點的切線與直線和直線所圍三角形的面積為定值,并求出此定值.
(3) 將函數(shù)的圖象向左平移一個單位后與拋物線為非0常數(shù))的圖象有幾個交點?(說明理由)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
設函數(shù).
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)若不等式恒成立,求實數(shù)m的取值范圍.
(3)若對任意的,總存在,使不等式成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)設,其中為正實數(shù)。
(1)當時,求的極值點;
(2)若為R上的單調(diào)函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)其中
(1)、若的單調(diào)增區(qū)間是(0.1),求m的值
(2)、當時,函數(shù)的圖像上任意一點的切線斜率恒大于3m,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)
(1)若對定義域內(nèi)任意,都有成立,求實數(shù)的值;
(2)若函數(shù)在定義域上是單調(diào)函數(shù),求的范圍;
(3)若,證明對任意正整數(shù),不等式都成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知函數(shù) (R).
(1)若,求函數(shù)的極值;
(2)是否存在實數(shù)使得函數(shù)在區(qū)間上有兩個零點,若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)。
(1)若不等式對任意的實數(shù)恒成立,求實數(shù)的取值范圍;
(2)設,且上單調(diào)遞增,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
若函數(shù)為奇函數(shù),當時,(如圖).

(Ⅰ)求函數(shù)的表達式,并補齊函數(shù)的圖象;
(Ⅱ)用定義證明:函數(shù)在區(qū)間上單調(diào)遞增.

查看答案和解析>>

同步練習冊答案