(本小題滿分12分)
設函數(shù),曲線在點處的切線方程.
(1)求的解析式,并判斷函數(shù)的圖像是否為中心對稱圖形?若是,請求其對稱中心;否則說明理由。
(2)證明:曲線上任一點的切線與直線和直線所圍三角形的面積為定值,并求出此定值.
(3) 將函數(shù)的圖象向左平移一個單位后與拋物線(為非0常數(shù))的圖象有幾個交點?(說明理由)
(1) 的圖像是以點為中心的中心對稱圖形.
(2) 三角形的面積為定值
(3) 由三次函數(shù)的圖象是連續(xù)的可知F(x)至少有一零點
當時在R上為減函數(shù)(減函數(shù)至多有一個零點),
所以此時F(x)有且只有一個零點;
解析試題分析:解:(1),
曲線在點處的切線方程為y=3,
于是 解得或
因,故.
,滿足,所以是奇函數(shù)
所以,其圖像是以原點(0,0)為中心的中心對稱圖形.
而函數(shù)的圖像按向量平移,即得到函數(shù)的圖像,
故函數(shù)的圖像是以點為中心的中心對稱圖形.
(2)證明:在曲線上任取一點. 由知,
過此點的切線方程為.
令得,切線與直線交點為.
令得,切線與直線交點為.
直線與直線的交點為.
從而所圍三角形的面積為.
所以,所圍三角形的面積為定值.
(3)將函數(shù)的圖象向左平移一個單位后得到的函數(shù)為,
它與拋物線的交點個數(shù)等于方程=的解的個數(shù)
法一:
即 (解的個數(shù),(易知0不是其解,不產生增根)
即 的零點(與x軸交點的橫坐標)的個數(shù)
由三次函數(shù)的圖象是連續(xù)的可知F(x)至少有一零點 11分
當時在R上為減函數(shù)(減函數(shù)至多有一個零點),
所以此時F(x)有且只有一個零點;
考點:導數(shù)的幾何意義以及函數(shù)零點
點評:解決的關鍵是能結合導數(shù)的幾何意義表示切線方程,進而分析函數(shù)的零點個數(shù),需要對于a分類討論得到,屬于中檔題。
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),且對任意的實數(shù)都有成立.
(1)求實數(shù)的值;
(2)利用函數(shù)單調性的定義證明函數(shù)在區(qū)間上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
(1)判斷函數(shù)的奇偶性;
(2)若在區(qū)間是增函數(shù),求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)生物體死亡后,它機體內原有的碳14會按確定的規(guī)律衰減,大約每經過5730年衰減為原來的一半,這個時間稱為“半衰期”.
(Ⅰ)設生物體死亡時體內每克組織中的碳14的含量為1,根據上述規(guī)律,寫出生物體內碳14的含量與死亡年數(shù)之間的函數(shù)關系式;
(Ⅱ)湖南長沙馬王堆漢墓女尸出土時碳14的殘余量約占原始含量的76.7℅,試推算馬王堆漢墓的年代.(精確到個位;輔助數(shù)據:)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
(1)寫出函數(shù)的遞減區(qū)間;
(2)討論函數(shù)的極大值或極小值,如有試寫出極值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題共10分)
已知函數(shù)
(1)解關于的不等式;
(2)若函數(shù)的圖象恒在函數(shù)圖象的上方(沒有公共點),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
(1)若函數(shù)在上為增函數(shù),求正實數(shù)的取值范圍;
(2)當時,求在上的最大值和最小值;
(3) 當時,求證:對大于1的任意正整數(shù),都有。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)
已知函數(shù)在點處的切線方程為.
⑴求函數(shù)的解析式;
⑵若對于區(qū)間上任意兩個自變量的值都有,求實數(shù)的最小值;
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com