【題目】如圖,在底面是菱形的四棱錐中, , , 為線段上一點,且

(Ⅰ)若的中點,證明: 平面

(Ⅱ)求二面角的余弦值.

【答案】(Ⅰ)見解析;(Ⅱ) .

【解析】試題分析:(Ⅰ)可證明,又平面, 平面,所以平面

(Ⅱ)分別以直線軸、軸、軸建立空間直角標系,求解即可.

試題解析:(Ⅰ)證明:連接,連接,因為四邊形是菱形,所以的中點.

又因為, 的中點,所以的中點,所以,

又因為平面, 平面,所以平面

(Ⅱ)連接,因為,所以,因為,所以,而,所以平面.因為在菱形中, ,所以是等邊三角形.

,則, ,在中,由,解得

分別以直線軸、軸、軸建立如圖所示的空間直角標系,由題意得, , , ,由,得

設平面的一個法向量為,

,得,

取平面的一個法向量為,

,

所以二面角的余弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】“足寒傷心,民寒傷國”,精準扶貧是鞏固溫飽成果、加快脫貧致富、實現(xiàn)中華民族偉大“中國夢”的重要保障某地政府在對石山區(qū)鄉(xiāng)鎮(zhèn)企業(yè)實施精準扶貧的工作中,準備投入資金將當?shù)剞r產品進行二次加工后進行推廣促銷,預計該批產品銷售量萬件(生產量與銷售量相等)與推廣促銷費萬元之間的函數(shù)關系為(其中推廣促銷費不能超過3萬元).已知加工此批農產品還要投入成本萬元(不包含推廣促銷費用),若加工后的每件成品的銷售價格定為/件.

(1)試將該批產品的利潤萬元表示為推廣促銷費萬元的函數(shù);(利潤銷售額成本推廣促銷費)

(2)當推廣促銷費投入多少萬元時,此批產品的利潤最大?最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給定下列函數(shù):①f(x)= ②f(x)=﹣|x|③f(x)=﹣2x﹣1 ④f(x)=(x﹣1)2 , 滿足“對任意x1 , x2∈(0,+∞),當x1<x2時,都有f(x1)>f(x2)”的條件是( )
A.①②③
B.②③④
C.①②④
D.①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)討論函數(shù)的單調性;

(Ⅱ)證明: 時,

(Ⅲ)比較三個數(shù): , , 的大。為自然對數(shù)的底數(shù)),請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于下列命題:
①若函數(shù)y=2x的定義域是{x|x≤0},則它的值域是{y|y≤1};
②若函數(shù)y= 的定義域是{x|x>2},則它的值域是{y|y≤ };
③若函數(shù)y=x2的值域是{y|0≤y≤4},則它的定義域一定是{x|﹣2≤x≤2};
④若函數(shù)y=log2x的值域是{y|y≤3},則它的定義域是{x|0<x≤8}.
其中不正確的命題的序號是 . (注:把你認為不正確的命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】計算與求解
(1)計算:2log32﹣log3 +log38﹣5
(2)已知a>0,a≠1,若loga(2x+1)<loga (4x﹣3),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)當時,求關于的不等式的解集;

(2)若上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=1﹣ (a>0且a≠1)是定義在R上的奇函數(shù).
(1)求a的值;
(2)求f(x)的值域;
(3)若關于x的方程|f(x)(2x+1)|=m有1個實根,求實數(shù)m的取值范圍;
(4)當x∈(0,1]時,tf(x)≥2x﹣2恒成立,求實數(shù)t取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】血藥濃度(Plasma Concentration)是指藥物吸收后在血漿內的總濃度. 藥物在人體內發(fā)揮治療作用時,該藥物的血藥濃度應介于最低有效濃度和最低中毒濃度之間.已知成人單次服用1單位某藥物后,體內血藥濃度及相關信息如圖所示:

根據圖中提供的信息,下列關于成人使用該藥物的說法中,不正確的是

A. 首次服用該藥物1單位約10分鐘后,藥物發(fā)揮治療作用

B. 每次服用該藥物1單位,兩次服藥間隔小于2小時,一定會產生藥物中毒

C. 每間隔5.5小時服用該藥物1單位,可使藥物持續(xù)發(fā)揮治療作用

D. 首次服用該藥物1單位3小時后,再次服用該藥物1單位,不會發(fā)生藥物中毒

查看答案和解析>>

同步練習冊答案