【題目】“足寒傷心,民寒傷國”,精準(zhǔn)扶貧是鞏固溫飽成果、加快脫貧致富、實(shí)現(xiàn)中華民族偉大“中國夢”的重要保障某地政府在對石山區(qū)鄉(xiāng)鎮(zhèn)企業(yè)實(shí)施精準(zhǔn)扶貧的工作中,準(zhǔn)備投入資金將當(dāng)?shù)剞r(nóng)產(chǎn)品進(jìn)行二次加工后進(jìn)行推廣促銷,預(yù)計(jì)該批產(chǎn)品銷售量萬件(生產(chǎn)量與銷售量相等)與推廣促銷費(fèi)萬元之間的函數(shù)關(guān)系為(其中推廣促銷費(fèi)不能超過3萬元).已知加工此批農(nóng)產(chǎn)品還要投入成本萬元(不包含推廣促銷費(fèi)用),若加工后的每件成品的銷售價(jià)格定為/件.

(1)試將該批產(chǎn)品的利潤萬元表示為推廣促銷費(fèi)萬元的函數(shù);(利潤銷售額成本推廣促銷費(fèi))

(2)當(dāng)推廣促銷費(fèi)投入多少萬元時(shí),此批產(chǎn)品的利潤最大?最大利潤為多少?

【答案】(1)詳見解析;(2) 當(dāng)推廣促銷費(fèi)投入2萬元時(shí),利潤最大為14萬元.

【解析】試題分析:(1)結(jié)合題意可得;(2),通過變形利用基本不等式可得,即得最大利潤為14萬元。

試題解析:

(1)由題意知

(2)(1)

,

當(dāng)且僅當(dāng),即時(shí)等號成立。

當(dāng)時(shí),。

答:當(dāng)推廣促銷費(fèi)投入2萬元時(shí),利潤最大為14萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點(diǎn)

(Ⅰ)求橢圓的方程.

(Ⅱ)若, 是橢圓上兩個(gè)不同的動(dòng)點(diǎn),且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接2017年“雙”,“雙”購物狂歡節(jié)的來臨,某青花瓷生產(chǎn)廠家計(jì)劃每天生產(chǎn)湯碗、花瓶、茶杯這三種瓷器共個(gè),生產(chǎn)一個(gè)湯碗需分鐘,生產(chǎn)一個(gè)花瓶需分鐘,生產(chǎn)一個(gè)茶杯需分鐘,已知總生產(chǎn)時(shí)間不超過小時(shí).若生產(chǎn)一個(gè)湯碗可獲利潤元,生產(chǎn)一個(gè)花瓶可獲利潤元,生產(chǎn)一個(gè)茶杯可獲利潤元.

(1)使用每天生產(chǎn)的湯碗個(gè)數(shù)與花瓶個(gè)數(shù)表示每天的利潤(元);

(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C 的離心率為,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為

(1)求橢圓C的方程;

(2)設(shè)直線l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為,求△AOB面積的最大值,并求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,是偶函數(shù),且在區(qū)間(0,1)上為增函數(shù)的是(
A.y=|x|
B.y=1﹣x
C.y=
D.y=﹣x2+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)市場分析,某蔬菜加工點(diǎn),當(dāng)月產(chǎn)量在10噸至25噸時(shí),月生產(chǎn)總成本(萬元)可以看成月產(chǎn)量(噸)的二次函數(shù).當(dāng)月產(chǎn)量為10噸時(shí),月總成本為20萬元;當(dāng)月產(chǎn)量為15噸時(shí),月總成本最低為17.5萬元.

(1)寫出月總成本(萬元)關(guān)于月產(chǎn)量(噸)的函數(shù)關(guān)系;

(2)已知該產(chǎn)品的銷售價(jià)為每噸1.6萬元,那么月產(chǎn)量為多少時(shí),可獲最大利潤.

(3)當(dāng)月產(chǎn)量為多少噸時(shí),每噸平均成本最低,最低成本是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校在一次第二課堂活動(dòng)中,特意設(shè)置了過關(guān)智力游戲,游戲共五關(guān).規(guī)定第一關(guān)沒過者沒獎(jiǎng)勵(lì),過關(guān)者獎(jiǎng)勵(lì)件小獎(jiǎng)品(獎(jiǎng)品都一樣).下圖是小明在10次過關(guān)游戲中過關(guān)數(shù)的條形圖,以此頻率估計(jì)概率.

(Ⅰ)求小明在這十次游戲中所得獎(jiǎng)品數(shù)的均值;

(Ⅱ)規(guī)定過三關(guān)者才能玩另一個(gè)高級別的游戲,估計(jì)小明一次游戲后能玩另一個(gè)游戲的概率;

(Ⅲ)已知小明在某四次游戲中所過關(guān)數(shù)為{2,2,3,4},小聰在某四次游戲中所過關(guān)數(shù)為{3,3,4,5},現(xiàn)從中各選一次游戲,求小明和小聰所得獎(jiǎng)品總數(shù)超過10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求的單調(diào)區(qū)間;

2)若時(shí),不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面是菱形的四棱錐中, , , , 為線段上一點(diǎn),且

(Ⅰ)若的中點(diǎn),證明: 平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案