【題目】從你所在班級任意選出6名同學(xué),調(diào)查他們的出生月份,假設(shè)出生在一月,二月……十二月是等可能的.設(shè)事件至少有兩人出生月份相同,設(shè)計一種試驗方法,模擬20次,估計事件發(fā)生的概率.

【答案】見解析

【解析】

根據(jù)題意可知,每個人的出生月份在12個月中是等可能的,而且相互之間沒有影響,所以觀察6個人的出生月份可以看成可重復(fù)試驗,即可求得答案.

根據(jù)假設(shè),每個人的出生月份在12個月中是等可能的,而且相互之間沒有影響,所以觀察6個人的出生月份可以看成可重復(fù)試驗.

因此,可以構(gòu)建如下有放回摸球試驗進行模擬:在袋子中裝入編號為1,2,,1212個球,這些球除編號外沒有什么差別.有放回地隨機從袋中摸6次球,得到6個數(shù)代表6個人的出生月份,這就完成了一次模擬試驗.如果這6個數(shù)中至少有2個相同,表示事件發(fā)生了.重復(fù)以上模擬試驗20次,就可以統(tǒng)計出事件發(fā)生的頻率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓和拋物線,圓與拋物線的準線交于兩點,的面積為,其中的焦點.

(1)求拋物線的方程;

(2)不過原點的動直線交該拋物線于兩點,且滿足,設(shè)點為圓上任意一動點,求當(dāng)動點到直線的距離最大時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表是甲、乙兩名射擊運動員在參賽前的訓(xùn)練中擊中10環(huán)以上的次數(shù)統(tǒng)計,根據(jù)表格中的數(shù)據(jù)回答以下問題:

射擊次數(shù)

10

20

50

100

200

500

甲擊中10環(huán)以上的次數(shù)

9

17

44

92

179

450

甲擊中10環(huán)以上的頻率

射擊次數(shù)

10

20

50

100

200

500

乙擊中10環(huán)以上的次數(shù)

8

19

44

93

177

453

乙擊中10環(huán)以上的頻率

1)分別計算出兩位運動員擊中10環(huán)以上的頻率;

2)根據(jù)(l)中的計算結(jié)果預(yù)測兩位運動員在比賽時擊中10環(huán)以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某縣畜牧技術(shù)員張三和李四9年來一直對該縣山羊養(yǎng)殖業(yè)的規(guī)模進行跟蹤調(diào)查,張三提供了該縣某山羊養(yǎng)殖場年養(yǎng)殖數(shù)量y(單位:萬只)與相成年份x(序號)的數(shù)據(jù)表和散點圖(如圖所示),根據(jù)散點圖,發(fā)現(xiàn)y與x有較強的線性相關(guān)關(guān)系,李四提供了該縣山羊養(yǎng)殖場的個數(shù)z(單位:個)關(guān)于x的回歸方程.

(1)根據(jù)表中的數(shù)據(jù)和所給統(tǒng)計量,求y關(guān)于x的線性回歸方程(參考統(tǒng)計量:);

(2)試估計:①該縣第一年養(yǎng)殖山羊多少萬只?

②到第幾年,該縣山羊養(yǎng)殖的數(shù)量與第一年相比縮小了?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價為60元,該廠為鼓勵銷售商訂購,決定當(dāng)一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出廠單價就降低0.02元,根據(jù)市場調(diào)查,銷售商一次訂購量不會超過500.

1)設(shè)一次訂購量為x件,服裝的實際出廠單價為P元,寫出函數(shù)的表達式;

2)當(dāng)銷售商一次訂購450件服裝時,該服裝廠獲得的利潤是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 ,圓

(1)求證:直線與圓總相交;

(2)求出相交的弦長的最小值及相應(yīng)的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為奇函數(shù),且,其中.

(1)求的值.

(2)若,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象在點處的切線為,也為函數(shù)的圖象的切線,必須滿足

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)(題文)已知橢圓的離心率為,過右焦點且斜率為1的直線交橢圓A,B兩點, N為弦AB的中點,O為坐標原點.

(1)求直線ON的斜率

(2)求證:對于橢圓上的任意一點M,都存在,使得成立.

查看答案和解析>>

同步練習(xí)冊答案