【題目】已知.
(1)當(dāng)時,若函數(shù)存在與直線平行的切線,求實數(shù)的取值范圍;
(2)當(dāng)時,,若的最小值是,求的最小值.
【答案】(1);(2)的最小值為.
【解析】
(1)求出導(dǎo)函數(shù),則有實數(shù)解,由此可得的范圍;
(2)考慮到的表達式,題意說明在上恒成立,且“=”可取,這樣問題又可轉(zhuǎn)化為即恒成立,且可取.,即的最小值是0.,為求的零點,由得,再由導(dǎo)數(shù)求得的最小值是.由于題中要求的最小值,因此研究時的正負,從而得的最小值,可證得此最小值,且為0時只有一解,這樣得出結(jié)論.
(1)因為,因為函數(shù)存在與直線平行的切線,所以
在上有解,即在上有解,所以,得,
故所求實數(shù)的取值范圍是.
(2)由題意得:對任意恒成立,且可取,即恒成立,且可取.
令,即
,由得,令
.
當(dāng)時,,
在上,;
在上,.所以.
令在上遞減,所以,故方程有唯一解即,
綜上,當(dāng)滿足的最小值為,故的最小值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,橢圓的中心為坐標(biāo)原點,焦點,在軸上,且在拋物線的準(zhǔn)線上,點是橢圓上的一個動點,面積的最大值為.
(1)求橢圓的方程;
(2)過焦點,作兩條平行直線分別交橢圓于,,,四個點.求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù).
(Ⅰ)若曲線在點處的切線與直線垂直,求單調(diào)遞減區(qū)間和極值(其中為自然對數(shù)的底數(shù));
(Ⅱ)若對任意,恒成立.求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某段地鐵線路上有A,B,C三站,(千米),(千米),在列車運行時刻表上,規(guī)定列車8:00從A站出發(fā),8:07到達B站,并停留1分鐘,8:12到達C站,并在行駛時以同一速度(千米/分)勻速行駛;列車從A站出發(fā)到達某站的時間與時刻表上相應(yīng)時間差的絕對值,稱為列車在該站的運行誤差;
(1)分別用速度表示列車在B,C兩站的運行誤差;
(2)若要求列車在B,C兩站的運行誤差之和不超過2分鐘,求列車速度的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)若函數(shù)在處取得極大值,求實數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點法”畫函數(shù),在某一周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:
0 | |||||
x | |||||
0 | 2 | 0 | 0 |
(1)請將上表數(shù)據(jù)補充完整,并求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時,求函數(shù)在處的切線方程;
(2)記函數(shù)的導(dǎo)函數(shù)是,若不等式對任意的實數(shù)恒成立,求實數(shù)a的取值范圍;
(3)設(shè)函數(shù),是函數(shù)的導(dǎo)函數(shù),若函數(shù)存在兩個極值點,,且,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)在已分組的若干數(shù)據(jù)中,每組的頻數(shù)是指___________,每組的頻率是指____________.
(2)一個公司共有N名員工,下設(shè)一些部門,要采用等比例外層隨機抽樣的方法從全體員工中抽取樣本量為n的樣本,如果某部門有m名員工,那么從該部門抽取的員工人數(shù)是____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com