【題目】數(shù)列滿足,,

1)設(shè),證明是等差數(shù)列;

2)求的通項(xiàng)公式.

【答案】1)證明見解析;(2.

【解析】

試題(1)an22an1an2,得an2an1an1an2,即可證得;

(2)由(1)bn12(n1)2n1,即an1an2n1,進(jìn)而利用累加求通項(xiàng)公式即可.

試題解析:

(1)證明 an2=2an1an+2,得an2an1an1an+2,即bn1bn+2.

b1a2a1=1,所以{bn}是首項(xiàng)為1,公差為2的等差數(shù)列.

(2)解 (1)bn=1+2(n-1)=2n-1,即an1an=2n-1.

于是(ak1ak)=(2k-1),所以an1a1n2,即an1n2a1.

a1=1,所以ann2-2n+2,經(jīng)檢驗(yàn),此式對(duì)n=1亦成立,

所以,{an}的通項(xiàng)公式為ann2-2n+2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)試驗(yàn)中,把一種血清注射到500只豚鼠體內(nèi),被注射前,這些豚鼠中150只有圓形細(xì)胞,250只有橢圓形細(xì)胞,100只有不規(guī)則形狀細(xì)胞;被注射后,沒有一個(gè)具有圓形細(xì)胞的豚鼠被感染,50個(gè)具有橢圓形細(xì)胞的豚鼠被感染,具有不規(guī)則形狀細(xì)胞的豚鼠全部被感染,根據(jù)試驗(yàn)結(jié)果,估計(jì)具有下列類型的細(xì)胞的豚鼠被這種血清感染的概率;

1)圓形細(xì)胞;

2)橢圓形細(xì)胞;

3)不規(guī)則形狀細(xì)胞.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的三個(gè)頂點(diǎn)落在半徑為的球的表面上,三角形有一個(gè)角為且其對(duì)邊長為3,球心所在的平面的距離恰好等于半徑的一半,點(diǎn)為球面上任意一點(diǎn),則三棱錐的體積的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)單調(diào)函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>,如果單調(diào)函數(shù)使得函數(shù)的值域也是,則稱函數(shù)是函數(shù)的一個(gè)保值域函數(shù).已知定義域?yàn)?/span>的函數(shù),函數(shù)互為反函數(shù),且的一個(gè)保值域函數(shù)”,的一個(gè)保值域函數(shù),則__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某水域受到污染,水務(wù)部門決定往水中投放一種藥劑來凈化水質(zhì),已知每次投放質(zhì)量為的藥劑后,經(jīng)過)天,該藥劑在水中釋放的濃度(毫克升)為,其中,當(dāng)藥劑在水中釋放濃度不低于(毫克升)時(shí)稱為有效凈化,當(dāng)藥劑在水中釋放的濃度不低于(毫克升)且不高于(毫克升)時(shí)稱為最佳凈化.

1)如果投放的藥劑質(zhì)量為,那么該水域達(dá)到有效凈化一共可持續(xù)幾天?

2)如果投放的藥劑質(zhì)量為,為了使該水域天(從投放藥劑算起,包括第天)之內(nèi)都達(dá)到最佳凈化,確定應(yīng)該投放的藥劑質(zhì)量的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC-A1B1C1中,DE分別為AB,BC的中點(diǎn),點(diǎn)F在側(cè)棱B1B上,且, .

求證:(1)直線DE平面A1C1F;

2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在貫徹中共中央國務(wù)院關(guān)于精準(zhǔn)扶貧政策的過程中,某單位定點(diǎn)幫扶甲、乙兩個(gè)村各50戶貧困戶.為了做到精準(zhǔn)幫扶,工作組對(duì)這100戶村民的年收入情況、勞動(dòng)能力情況、子女受教育情況、危舊房情況、患病情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標(biāo)制成下圖,其中”表示甲村貧困戶,“”表示乙村貧困戶.

,則認(rèn)定該戶為“絕對(duì)貧困戶”,若,則認(rèn)定該戶為“相對(duì)貧困戶”,若,則認(rèn)定該戶為“低收入戶”;

,則認(rèn)定該戶為“今年能脫貧戶”,否則為“今年不能脫貧戶”.

1)從甲村50戶中隨機(jī)選出一戶,求該戶為“今年不能脫貧的絕對(duì)貧困戶的概率;

2)若從所有“今年不能脫貧的非絕對(duì)貧困戶”中選3戶,用表示所選3戶中乙村的戶數(shù),求的分布列和數(shù)學(xué)期望;

3)試比較這100戶中,甲、乙兩村指標(biāo)的方差的大。ㄖ恍鑼懗鼋Y(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)當(dāng)時(shí),若函數(shù)存在與直線平行的切線,求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),,若的最小值是,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲船在點(diǎn)發(fā)現(xiàn)乙船在北偏東處,里,且乙船以每小時(shí)10里的速度向正北行駛,已知甲船的速度是每小時(shí)里,問:甲船以什么方向前進(jìn),才能與乙船最快相遇,相遇時(shí)甲船行駛了多少小時(shí)?

查看答案和解析>>

同步練習(xí)冊(cè)答案