【題目】對于函數(shù)的定義域?yàn)?/span>,

1)求實(shí)數(shù)的值,使函數(shù)為奇函數(shù);

2)在(1)的條件下,令,求使方程,有解的實(shí)數(shù)的取值范圍;

3)在(1)的條件下,不等式對于任意的恒成立,求實(shí)數(shù)的取值范圍.

【答案】1;(2;(3)當(dāng)時,;當(dāng)時,;

【解析】

1)先利用求得,再驗(yàn)證即可;

2)求得此時函數(shù),由此得解;

3)令,當(dāng)時,問題等價為恒成立即可,當(dāng)時,問題等價為恒成立,由此得解.

1)由得,

事實(shí)上,當(dāng)時,,此時

故當(dāng)時,函數(shù)為奇函數(shù);

2)依題意,,當(dāng),時,顯然函數(shù)為增函數(shù),故

為使方程,有解,則即可;

3)易知,當(dāng)時,函數(shù)單調(diào)遞增,原不等式成立即為3),

故只要即可,

,則,

,

恒成立即可,

,

;

同理,當(dāng)時,函數(shù)單調(diào)遞減,

故只要即可,

恒成立即可,可得;

綜上可知,當(dāng)時,;當(dāng)時,;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)若函數(shù)存在零點(diǎn),求實(shí)數(shù)的最小值;

2)若函數(shù)有兩個零點(diǎn)分別是,且對于任意的恒成立,求實(shí)數(shù)的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某村電費(fèi)收取有以下兩種方案供農(nóng)戶選擇:方案一:每戶每月收管理費(fèi)2元,月用電不超過30度時,每度0.5;超過30度時,超過部分按每度0.6元收取. 方案二:不收管理費(fèi),每度0.58.

(1)求方案一收費(fèi)元與用電量x ()之間的函數(shù)關(guān)系;

(2)老王家九月份按方案一交費(fèi)35元,問老王家該月用電多少度?

(3)老王家月用電最在什么范圍時,選擇方案一比選擇方案二更好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用符號“”或“”填空:

1)設(shè)A為所有亞洲國家組成的集合,則中國______________A,美國__________A,印度____________A,英國_____________A;

2)若,則-1_____________A

3)若,則3________________B;

4)若,則8_______________C9.1____________C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)為別為,且過點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)如圖,點(diǎn)為橢圓上一動點(diǎn)(非長軸端點(diǎn)),的延長線與橢圓交于點(diǎn),的延長線與橢圓交于點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市理論預(yù)測2014年到2018年人口總數(shù)(單位:十萬)與年份(用表示)的關(guān)系如表所示:

(1)請畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的回歸方程;

(3)據(jù)此估計(jì)2019年該城市人口總數(shù).

(參考數(shù)據(jù):

參考公式:線性回歸方程為,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年某市有2萬多文科考生參加高考,除去成績?yōu)?/span>670分(含670分)以上的3人與成績?yōu)?/span>350分(不含350分)以下的3836人,還有約1.9萬文科考生的成績集中在內(nèi),其成績的頻率分布如下表所示:

分?jǐn)?shù)段

頻率

分?jǐn)?shù)段

頻率

(1)試估計(jì)該次高考成績在內(nèi)文科考生的平均分(精確到);

(2)一考生填報(bào)志愿后,得知另外有4名同分?jǐn)?shù)考生也填報(bào)了該志愿.若該志愿計(jì)劃錄取3人,并在同分?jǐn)?shù)考生中隨機(jī)錄取,求該考生不被該志愿錄取的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果數(shù)列對任意的滿足:,則稱數(shù)列數(shù)列”.

1)已知數(shù)列數(shù)列,設(shè),求證:數(shù)列是遞增數(shù)列,并指出的大小關(guān)系(不需要證明);

2)已知數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,是其前項(xiàng)的和,若數(shù)列數(shù)列,求的取值范圍;

3)已知數(shù)列是各項(xiàng)均為正數(shù)的數(shù)列,對于取相同的正整數(shù)時,比較的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國歷史上一部影響巨大的著作,它問世后不久便風(fēng)行宇內(nèi),成為明清之際研習(xí)數(shù)學(xué)者必讀的教材,而且傳到朝鮮、日本及東南亞地區(qū),對推動漢字文化圈的數(shù)學(xué)發(fā)展起了重要的作用.卷八中第33問是:“今有三角果一垛,底闊每面七個,問該若干?”如圖是解決該問題的程序框圖,執(zhí)行該程序框圖,求得該垛果子的總數(shù)為( )

A. 120 B. 84 C. 56 D. 28

查看答案和解析>>

同步練習(xí)冊答案