如圖,O為數(shù)軸的原點,A,B,M為數(shù)軸上三點,C為線段OM上的動點,設(shè)x表示C與原點的距離,y 表示C到A距離4倍與C道B距離的6倍的和.
(1)將y表示成x的函數(shù);
(2)要使y的值不超過70,x應(yīng)該在什么范圍內(nèi)取值?

【答案】分析:(1)由題設(shè)描述CO=x,CA=|10-x|,CB=|20-x|,由y 表示C到A距離4倍與C道B距離的6倍的和,直接建立函數(shù)關(guān)系即可,由于解析式含有絕對值號,故可以將解析式轉(zhuǎn)換成分段函數(shù).
(2)對(1)中的函數(shù)進行研究利用其單調(diào)性與值域探討x的取值范圍即可.
解答:解:(1)由題設(shè),CO=x,CA=|10-x|,CB=|20-x|,
故y=4×|10-x|+6×|20-x|,x∈[0,30]
即y=
(2)令y≤70,
當(dāng)x∈[0,10]時,由160-10x≤70得x≥9,故x∈[9,10]
當(dāng)x∈(10,20]時,由80-2x≤70得x≥5,故x∈(10,20]
當(dāng)x∈(20,30]時,由10x-160≤70得x≤23,故x∈(20,23]
綜上知,x∈[9,23]
點評:本題考點是函數(shù)解析式的求解及常用方法,本題考查根據(jù)題設(shè)條件所給的關(guān)系建立函數(shù)解析式,然后再根據(jù)解析式解不等式,由于本題的解析式是一個分段型的,所以在解不等式時要分段求解,解出每一段上的不等式的解集,最后再將它們并起來.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,O為數(shù)軸的原點,A,B,M為數(shù)軸上三點,C為線段OM上的動點,設(shè)x表示C與原點的距離,y 表示C到A距離4倍與C道B距離的6倍的和.
(1)將y表示成x的函數(shù);
(2)要使y的值不超過70,x應(yīng)該在什么范圍內(nèi)取值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

()(本小題滿分10分)選修4-5:不等式選講

如圖,O為數(shù)軸的原點,A,B,M為數(shù)軸上三點,C為線段OM上的動點,設(shè)x表示C與原點的距離,y 表示C到A距離4倍與C道B距離的6倍的和.

(1)將y表示成x的函數(shù);

(2)要使y的值不超過70,x 應(yīng)該在什么范圍內(nèi)取值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年海南省、寧夏區(qū)高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,O為數(shù)軸的原點,A,B,M為數(shù)軸上三點,C為線段OM上的動點,設(shè)x表示C與原點的距離,y 表示C到A距離4倍與C道B距離的6倍的和.
(1)將y表示成x的函數(shù);
(2)要使y的值不超過70,x應(yīng)該在什么范圍內(nèi)取值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省高三第十次模擬考試理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,O為數(shù)軸的原點,A,B,M為數(shù)軸上三點,C為線段OM上的動點,設(shè)x表示C與原點的距離,f(x) 表示C到A距離4倍與C到B距離的6倍的和.

(1)求f(x)的解析式及其定義域;

(2)要使f(x)的值不超過70,x 應(yīng)該在什么范圍內(nèi)取值?

 

查看答案和解析>>

同步練習(xí)冊答案