給出下列四個(gè)命題:①“x<1”是“x2<1”的充分不必要條件;

②若f(x)是定義在[-1,1]的偶函數(shù)且在[-1,0]上是減函數(shù),θ),則f(sinθ)<;③若f(x)的圖像在點(diǎn)A(1,f(1))處的切線方程是y=x+2,則f(1)+f '(1)=3;

④若f(x)=lg(-x),則f(lg2)+f(lg)=0;⑤函數(shù)f(x)=在區(qū)間(0,1)上有零點(diǎn)。

其中所有正確命題的序號(hào)是________.

 

【答案】

③④⑤

【解析】

試題分析:對(duì)①:取x=-6<1,則“x2<1”不成立,所以不是充分條件;故錯(cuò);

對(duì)②:若是定義在[-1,1]的偶函數(shù)且在[-1,0]上是減函數(shù),則是增函數(shù).因?yàn)棣?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014041104335714176901/SYS201404110434222198134090_DA.files/image003.png">(),則,故錯(cuò);對(duì)③:的圖像在點(diǎn)處的切線方程是,則.故正確;

對(duì)④:,則,所以,正確;對(duì)⑤:因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014041104335714176901/SYS201404110434222198134090_DA.files/image012.png">,所以函數(shù)在區(qū)間(0,1)上有零點(diǎn),正確.

考點(diǎn):1、充要條件;2、函數(shù)的性質(zhì)與零點(diǎn);3、導(dǎo)數(shù)的應(yīng)用.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

12、已知a、b是兩條不重合的直線,α、β、γ是三個(gè)兩兩不重合的平面,給出下列四個(gè)命題:
①若a⊥α,a⊥β,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,a?α,b?β,則a∥b;
④若α∥β,α∩γ=a,β∩γ=b,則a∥b.
其中正確命題的序號(hào)有
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①函數(shù)y=
1
x
的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞);
②函數(shù)y=x2-4x+6,當(dāng)x∈[1,4]時(shí),函數(shù)的值域?yàn)閇3,6];
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個(gè)單位得到;
④若函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)f(2x)的定義域?yàn)閇0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,則A∩B=A.
其中正確命題的序號(hào)是
③④⑤
③④⑤
.(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將邊長(zhǎng)為2,銳角為60°的菱形ABCD沿較短對(duì)角線BD折成二面角A-BD-C,點(diǎn)E,F(xiàn)分別為AC,BD的中點(diǎn),給出下列四個(gè)命題:
①EF∥AB;②直線EF是異面直線AC與BD的公垂線;③當(dāng)二面角A-BD-C是直二面角時(shí),AC與BD間的距離為
6
2
;④AC垂直于截面BDE.
其中正確的是
②③④
②③④
(將正確命題的序號(hào)全填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題,其中正確的命題的個(gè)數(shù)為(  )
①命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函數(shù)y=tan
x
2
的對(duì)稱中心為(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函數(shù);
④函數(shù)y=(x-1)2與y=2x-1在區(qū)間[0,+∞)上都是增函數(shù),其中正確命題的序號(hào)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案