已知F是雙曲線
x2
4
-
y2
12
=1的左焦點(diǎn),A(1,4),P是雙曲線右支上的動點(diǎn),則|PF|+|PA|的最小值為( 。
A、7B、8C、9D、10
分析:求出右焦點(diǎn)H 的坐標(biāo),由雙曲線的定義可得|PF|+|PA|=2a+|PH|+|PA|≥2a+|AH|,從而求得2a+|AH|的值.
解答:解:∵F是雙曲線
x2
4
-
y2
12
=1的左焦點(diǎn),∴a=2,b=2
3
,c=4,F(xiàn)(-4,0 ),右焦點(diǎn)為H(4,0),
由雙曲線的定義可得|PF|+|PA|=2a+|PH|+|PA|≥2a+|AH|=4+
(4-1)2+(0-4)2
 
=4+5=9,
故選 C.
點(diǎn)評:本題考查雙曲線的定義和雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,把|PF|+|PA|化為2a+|PH|+|PA|是
解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F是雙曲線
x2
4
-
y2
12
=1
的左焦點(diǎn),A(1,4),P是雙曲線右支上的動點(diǎn),則|PF|+|PA|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)圓錐曲線上任意兩點(diǎn)連成的線段稱為弦.若圓錐曲線上的一條弦垂直于其對稱軸,我們將該弦稱之為曲線的垂軸弦.已知橢圓C:
x2
4
+y2=1

(1)過橢圓C的右焦點(diǎn)作一條垂直于x軸的垂軸弦MN,求MN的長度;
(2)若點(diǎn)P是橢圓C上不與頂點(diǎn)重合的任意一點(diǎn),MN是橢圓C的短軸,直線MP、NP分別交x軸于點(diǎn)E(xE,0)和點(diǎn)F(xF,0)(如圖),求xE?xF的值;
(3)在(2)的基礎(chǔ)上,把上述橢圓C一般化為
x2
a2
+
y2
b2
=1(a>b>0)
,MN是任意一條垂直于x軸的垂軸弦,其它條件不變,試探究xE?xF是否為定值?(不需要證明);請你給出雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
中相類似的結(jié)論,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是雙曲線
x2
4
-
y2
5
=1
右支上一點(diǎn),F(xiàn)是該雙曲線的右焦點(diǎn),點(diǎn)M為線段PF的中點(diǎn),若|OM|=3,則點(diǎn)P到該雙曲線右準(zhǔn)線的距離為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湛江二模 題型:單選題

已知F是雙曲線
x2
4
-
y2
12
=1的左焦點(diǎn),A(1,4),P是雙曲線右支上的動點(diǎn),則|PF|+|PA|的最小值為(  )
A.7B.8C.9D.10

查看答案和解析>>

同步練習(xí)冊答案