已知數(shù)列{an}的首項a1=2a+1(a是常數(shù),且a≠-1),
an=2an-1+n2-4n+2(n≥2),數(shù)列{bn}的首項b1=a,
bn=an+n2(n≥2).
(1)證明:{bn}從第2項起是以2為公比的等比數(shù)列;
(2)設Sn為數(shù)列{bn}的前n項和,且{Sn}是等比數(shù)列,求實數(shù)a的值;
(3)當a>0時,求數(shù)列{an}的最小項.

(1)見解析(2)a=-(3)當a∈時,最小項為8a-1;當a=時,最小項為4a或8a-1;當a∈時,最小項為4a;當a=時,最小項為4a或2a+1;
當a∈時,最小項為2a+1.

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知在數(shù)列{}中,
(1)求證:數(shù)列{}是等比數(shù)列,并求出數(shù)列{}的通項公式;
(2)設數(shù)列{}的前竹項和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列{an}的各項均為正數(shù)的等比數(shù)列,且a1a2=2,a3a4=32,
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}的前n項和為Sn=n2,(n∈N*),求數(shù)列{anbn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的前n項的和為,且
(1)證明數(shù)列是等比數(shù)列
(2)求通項與前n項的和;
(3)設若集合M=恰有4個元素,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設曲線在點處的切線與軸的交點坐標為
(1)求的表達式;
(2)設,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知正項數(shù)列,其前項和滿足的等比中項.
(1)求數(shù)列的通項公式;
(2) 符號表示不超過實數(shù)的最大整數(shù),記,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列{an}的前n項和Sn與通項an滿足Sn=-an.
(1)求數(shù)列{an}的通項公式;
(2)設f(x)=log3x,bn=f(a1)+f(a2)+…+f(an),Tn=++…+,求T2012;
(3)若cn=an·f(an),求{cn}的前n項和Un.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

等比數(shù)列{cn}滿足cn+1+cn=10·4n-1(n∈N*),數(shù)列{an}的前n項和為Sn,且an=log2cn.
(1)求an,Sn;
(2)數(shù)列{bn}滿足bn,Tn為數(shù)列{bn}的前n項和,是否存在正整數(shù)m(m>1),使得T1,Tm,T6m成等比數(shù)列?若存在,求出所有m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的前n項和為,
(1)求證:數(shù)列為等差數(shù)列;
(2)設數(shù)列的前n項和為Tn,求Tn

查看答案和解析>>

同步練習冊答案