已知數(shù)列{an}的首項a1=2a+1(a是常數(shù),且a≠-1),
an=2an-1+n2-4n+2(n≥2),數(shù)列{bn}的首項b1=a,
bn=an+n2(n≥2).
(1)證明:{bn}從第2項起是以2為公比的等比數(shù)列;
(2)設Sn為數(shù)列{bn}的前n項和,且{Sn}是等比數(shù)列,求實數(shù)a的值;
(3)當a>0時,求數(shù)列{an}的最小項.
科目:高中數(shù)學 來源: 題型:解答題
已知在數(shù)列{}中,
(1)求證:數(shù)列{}是等比數(shù)列,并求出數(shù)列{}的通項公式;
(2)設數(shù)列{}的前竹項和為Sn,求Sn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列{an}的各項均為正數(shù)的等比數(shù)列,且a1a2=2,a3a4=32,
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}的前n項和為Sn=n2,(n∈N*),求數(shù)列{anbn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列的前n項的和為,且,
(1)證明數(shù)列是等比數(shù)列
(2)求通項與前n項的和;
(3)設若集合M=恰有4個元素,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知正項數(shù)列,其前項和滿足且是和的等比中項.
(1)求數(shù)列的通項公式;
(2) 符號表示不超過實數(shù)的最大整數(shù),記,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列{an}的前n項和Sn與通項an滿足Sn=-an.
(1)求數(shù)列{an}的通項公式;
(2)設f(x)=log3x,bn=f(a1)+f(a2)+…+f(an),Tn=++…+,求T2012;
(3)若cn=an·f(an),求{cn}的前n項和Un.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
等比數(shù)列{cn}滿足cn+1+cn=10·4n-1(n∈N*),數(shù)列{an}的前n項和為Sn,且an=log2cn.
(1)求an,Sn;
(2)數(shù)列{bn}滿足bn=,Tn為數(shù)列{bn}的前n項和,是否存在正整數(shù)m(m>1),使得T1,Tm,T6m成等比數(shù)列?若存在,求出所有m的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com