如圖,在棱長均為2的正四棱錐中,點(diǎn)E為PC的中點(diǎn),則下列命題正確的是(  )(正四棱錐即底面為正方形,四條側(cè)棱長相等,頂點(diǎn)在底面上的射影為底面的中心的四棱錐)
A.,且直線BE到面PAD的距離為
B.,且直線BE到面PAD的距離為
C.,且直線BE與面PAD所成的角大于
D.,且直線BE與面PAD所成的角小于
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在棱長為的正方體中,
是線段的中點(diǎn),.
(Ⅰ) 求證:^
(Ⅱ) 求證:∥平面;
(Ⅲ) 求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在三棱錐P-ABC中,PA=PC,∠APC=∠ACB=90°,∠BAC=30°,平面PAC⊥平面ABC.

(1)求證:平面PAB⊥平面PBC;
(2)若PA=2,求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

給出下列命題:
①若平面α內(nèi)的直線l垂直于平面β內(nèi)的任意直線,則α⊥β;
②若平面α內(nèi)的任一直線都平行于平面β,則α∥β;
③若平面α垂直于平面β,直線l在平面α內(nèi),則l⊥β;
④若平面α平行于平面β,直線l在平面α內(nèi),則l∥β.
其中正確命題的個(gè)數(shù)是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在120°的二面角內(nèi),放一個(gè)半徑為5cm的球切兩半平面于A、B兩點(diǎn),那么這兩個(gè)切點(diǎn)在球面上的最短距離是                       。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐中,底面是平行四邊形,,垂足為,上,且,的中點(diǎn).

(1)求異面直線所成的角的余弦值;
(2)若是棱上一點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)
如圖,在直三棱柱,

(1)證明:
(2)求二面角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.下列四個(gè)命題
① 分別和兩條異面直線均相交的兩條直線一定是異面直線.  
② 一個(gè)平面內(nèi)任意一點(diǎn)到另一個(gè)平面之距離均相等,那么這兩個(gè)平面平行.
③ 一個(gè)二面角的兩個(gè)半平面分別垂直于另一個(gè)二面角的兩個(gè)半平面,則這兩個(gè)二面角的平
面角相等或互補(bǔ).   
④ 過兩異面直線外一點(diǎn)能作且只能作出一條直線和這兩條異面直線同時(shí)相交.其中正確命
題的個(gè)數(shù)是 
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
在棱長為2的正方體ABCD—A1B1C1D1中,E,F(xiàn)分別為A1D1和CC1的中點(diǎn).

(Ⅰ)求證:EF//平面ACD1
(Ⅱ)求異面直線EF與AB所成的角的余弦值;
(Ⅲ)在棱BB1上是否存在一點(diǎn)P,使得二面角P—AC—B的大小為30°?若存在,求出BP的長;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案