16.若集合A={x|x=2n,n∈Z},B={x|x=4n±1,n∈Z},則AUB=Z.

分析 根據(jù)題意得到A表示所有偶數(shù)組成的集合,集合B中元素為整數(shù)除以4得到的余數(shù)為1或3的數(shù),即為奇數(shù),故集合B表示所有奇數(shù)組成的集合,找出A與B的并集即可.

解答 解:集合A={x|x=2n,n∈Z},表示所有偶數(shù)組成的集合,
集合B={x|x=4n±1,n∈Z},其元素滿足:x=4n+1,或x=4n-1=4(n-1)+3,n∈Z,
可知是整數(shù)除以4得到的余數(shù)為1或3的數(shù),即為奇數(shù),
因此集合B是由所有奇數(shù)組成的集合,
則A∪B=Z,
故答案為:Z

點(diǎn)評(píng) 此題考查了并集及其運(yùn)算,熟練掌握并集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=ex(1+lnx).
(Ⅰ)求曲線f(x)在(1,f(1))處的切線方程;
(Ⅱ)證明:e2f(x)>e-$\frac{2{e}^{x}}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.(1-2x)5(1+3x)4的展開式中x2的系數(shù)等于( 。
A.-120B.-26C.94D.214

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知i為虛數(shù)單位,a∈R,若$\frac{1-i}{a+i}$為純虛數(shù),則復(fù)數(shù)z=(2a+1)+$\sqrt{2}$i的模等于( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{6}$D.$\sqrt{11}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=2lnx+$\frac{1}{x}$,g(x)=lnx-2x,h(x)=f(x)-a•g(x).
(1)求f(x)的極值;
(2)當(dāng)a<-2時(shí),求函數(shù)h(x)的單調(diào)區(qū)間;
(3)若對(duì)任意的a∈(-4,-2),總存在x1,x2∈[1,2],使不等式(m+ln2)a-2ln2<|h(x1)-h(x2)|成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=x+$\frac{9}{x+1}$(0≤x≤3),則f(x)的值域?yàn)閇5,9].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,AC⊥面BCD,BD⊥面ACD,若AC=CD=1,∠ABC=30°,求二面角C-AB-D的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=|x-1|+|x-2|.
(1)求函數(shù)g(x)=lg(f(x)-2)的定義域;
(2)若f(x)的最小值為m,a,b,c∈R,a+b+c=m,證明:a2+b2+c2≥$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.試判斷下列函數(shù)的奇偶性
(1)f(x)=$\frac{\sqrt{1-{x}^{2}}}{|x+3|-3}$
(2)f(x)=$\frac{|x|}{x}$(x-1)0

查看答案和解析>>

同步練習(xí)冊(cè)答案