(2009•黃浦區(qū)二模)設(shè)α∈(0,
π
2
),則
sin3α
cosα
+
cos3α
sinα
的最小值是( 。
分析:先對已知化簡
sin3α
cosα
+
cos3α
sinα
=
sin4α+cos4α
sinαcosα
=
2
sin2α
-sin2α
,由α∈(0,
π
2
)
可得sin2α∈(0,1]l
結(jié)合函數(shù)y=
2
t
-t
在(0,1]單調(diào)遞減可求最小值
解答:解:
sin3α
cosα
+
cos3α
sinα
=
sin4α+cos4α
sinαcosα

=
(sin2α+cos2α)2-2sin2αcos2α 
sinαcosα

=
1-2(sinαcosα)2
sinαcosα
=
2
sin2α
-
1
2
sin2α
×2=
2
sin2α
-sin2α

α∈(0,
π
2
)
∴2α∈(0,π),sin2α∈(0,1]l
∵函數(shù)y=
2
t
-t
在(0,1]單調(diào)遞減
2
sin2α
- sin2α≥1

故選:D
點(diǎn)評:本題主要考查了利用同角平方關(guān)系對三角函數(shù)的化簡,函數(shù)y=
2
t
-t
的單調(diào)性在最值求解中的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•黃浦區(qū)二模)已知角α的頂點(diǎn)在原點(diǎn),始邊與x軸正半軸重合,點(diǎn)P(-4m,3m)(m<0)是角α終邊上一點(diǎn),則2sinα+cosα=
-
2
5
-
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•黃浦區(qū)二模)關(guān)于x的方程(2+x)i=2-x(i是虛數(shù)單位)的解x=
-2i
-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•黃浦區(qū)二模)若函數(shù)f(x)=
x
2x+1
-ax-2
是定義域?yàn)镽的偶函數(shù),則實(shí)數(shù)a=
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•黃浦區(qū)二模)已知全集U=R,A={x|
x-1x-2
≥0,x∈R}
,B={x||x-1|≤1,x∈R},則(CRA)∩B=
(1,2]
(1,2]

查看答案和解析>>

同步練習(xí)冊答案