7.下列四組函數(shù)中表示同一個函數(shù)的是(  )
A.f(x)=|x|與$g(x)=\sqrt{x^2}$B.f(x)=x0與g(x)=1
C.$f(x)=\sqrt{x-1}\sqrt{x+1}$與$g(x)=\sqrt{{x^2}-1}$D.$f(x)=\root{3}{x^3}$與$g(x)=\sqrt{x^2}$

分析 根據(jù)兩個函數(shù)的定義域相同,對應(yīng)關(guān)系也相同,即可判斷它們是同一函數(shù).

解答 解:對于A,f(x)=|x|,定義域是R,g(x)=$\sqrt{{x}^{2}}$=|x|,定義域是R,定義域相同,對應(yīng)關(guān)系也相同,是同一函數(shù);
 對于B,f(x)=x0,定義域是{x|x≠0},g(x)=1的定義域為R,定義域不同,不是同一函數(shù);
對于C,$\sqrt{x-1}$•$\sqrt{x+1}$,定義域是{x|x≥1},g(x)=$\sqrt{{x}^{2}-1}$的定義域為(-∞,-1]∪[1,+∞),定義域不同,不是同一函數(shù);
對于D,f(x)=$\root{3}{{x}^{3}}$=x,g(x)=$\sqrt{{x}^{2}}$=|x|,對應(yīng)關(guān)系不同,不是同一函數(shù).
故選:A.

點評 本題考查了判斷兩個函數(shù)是否為同一函數(shù)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知點A,B在球O的球面上,∠AOB=60°,且點P為球O的球面上的動點,O的表面積為16π,則三棱錐O-PAB的體積的最大值為( 。
A.$\frac{2}{3}$$\sqrt{3}$B.$\frac{1}{6}$$\sqrt{3}$C.$\frac{2}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知a=0.23.5,b=0.24.1,c=e1.1,d=log0.23,則這四個數(shù)的大小關(guān)系是( 。
A.a<b<c<dB.a>b>c>dC.d<b<a<cD.b>a>c>d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.“存在x∈(0,+∞)使不等式mx2+2x+m>0成立”為假命題,則m的取值范圍為(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知x,y,z∈R,若-1,x,y,z,-3成等比數(shù)列,則xz的值為(  )
A.$-\sqrt{3}$B.$\sqrt{3}$C.$±\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.冪函數(shù)f(x)的圖象過點(2,16),則f(x)=x4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.($\frac{4}{9}$)${\;}^{\frac{1}{2}}$-($\frac{\sqrt{2}}{2}$)0+($\frac{27}{64}$)${\;}^{-\frac{1}{3}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知向量$\overrightarrow{a},\overrightarrow$夾角為60°,且|$\overrightarrow{a}$|=1,|2$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{7}$,則|$\overrightarrow$|=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=-(x-2m)(x+m+3)(其中m<-1),g(x)=2x-2.
(1)若命題“l(fā)og2g(x)<1”是真命題,求x的取值范圍;
(2)設(shè)命題p:?x∈(1,+∞),f(x)<0或g(x)<0;,若P是真命題,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案