分析 (1)當(dāng)a=2時(shí),求不等式即|x+2|+|x+$\frac{1}{2}$|>3,再利用對(duì)值的意義求得它的解集.
(2)由條件利用絕對(duì)值三角不等式、基本不等式,證得要證的結(jié)論.
解答 解:(1)當(dāng)a=2時(shí),求不等式f(x)>3,即|x+2|+|x+$\frac{1}{2}$|>3.
而|x+2|+|x+$\frac{1}{2}$|表示數(shù)軸上的x對(duì)應(yīng)點(diǎn)到-2、-$\frac{1}{2}$對(duì)應(yīng)點(diǎn)的距離之和,
而0和-3對(duì)應(yīng)點(diǎn)到-$\frac{11}{4}$、$\frac{1}{4}$對(duì)應(yīng)點(diǎn)的距離之和正好等于3,
故不等式f(x)>3的解集為{x|x<-$\frac{11}{4}$,或 x>$\frac{1}{4}$}.
(2)證明:∵f(m)+f(-$\frac{1}{m}$)=|m+a|+|m+$\frac{1}{a}$|+|-$\frac{1}{m}$+a||-$\frac{1}{m}$+$\frac{1}{a}$|
=(|m+a|+|-$\frac{1}{m}$+a|)+(|m+$\frac{1}{a}$|+|-$\frac{1}{m}$+$\frac{1}{a}$|)≥2(|m+$\frac{1}{m}$|)=2(|m|+|$\frac{1}{m}$|)≥4,
∴原結(jié)論成立.
點(diǎn)評(píng) 本題主要考查絕對(duì)值的意義,絕對(duì)值不等式的解法,絕對(duì)值三角不等式、基本不等式的應(yīng)用,屬于中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≥2 | B. | a<2 | C. | a≥1 | D. | a<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\frac{9\sqrt{3}}{2}$ | C. | $\frac{3\sqrt{3}}{2}$ | D. | 3$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,$\frac{1}{e}$+1] | B. | (-∞,$\frac{1}{e}$+1) | C. | ($\frac{1}{e}$+1,+∞) | D. | ($\frac{1}{e}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com