【題目】在△ABC中,內角A,B,C所對的邊分別是a,b,c.
(1)若a=2 ,A= ,且△ABC的面積S=2 ,求b,c的值;
(2)若sin(C﹣B)=sin2B﹣sinA,試判斷△ABC的形狀.
【答案】
(1)解:由題意知:a=2 ,A= ,△ABC的面積S=2 ,
∴S= bcsinA=2 ,
可得:bc=8;…①
由余弦定理a2=b2+c2﹣2bccosA,
代入化簡得:(b+c)2=36,
∴b+c=6;…②
連立①②得:b=2,c=4或b=4,c=2
(2)解:由題意知:sin(C﹣B)=sin2B﹣sinA,
∴sin(C+B)+sin(C﹣B)=sin2B,
化簡得:sinCcosB=sinBcosB,
∴cosB=0或sinC=sinB;
又A,B∈(0,π),
所以B= 或C=B;
即 ABC為直角三角形或等腰三角形
【解析】(Ⅰ)根據(jù)△ABC的面積S和余弦定理,組成方程組求出b、c的值;(2)由題意,利用三角形的內角和定理與三角恒等變換公式, 化簡求值,得出 ABC的形狀.
科目:高中數(shù)學 來源: 題型:
【題目】從數(shù)字1,2,3,4,5中,隨機抽取3個數(shù)字(允許重復)組成一個三位數(shù),其各位數(shù)字之和等于9的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=2x3﹣3(a+1)x2+6ax+8,其中a∈R.已知f(x)在x=3處取得極值.
(1)求f(x)的解析式;
(2)求f(x)在點A(1,16)處的切線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣x+c(c∈R)的一個零點為1. (Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)設 ,若g(t)=2,求實數(shù)t的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)當時,若函數(shù)在區(qū)間內單調遞減,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為了對新研發(fā)的一種產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到如表數(shù)據(jù):
單價x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
銷量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
由表中數(shù)據(jù),求得線性回歸方程為 =﹣4x+a.若在這些樣本點中任取一點,則它在回歸直線左下方的概率為 ( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某品牌連鎖便利店有個分店,A,B,C三種商品在各分店均有銷售,這三種商品的單價和重量如表1所示:
商品A | 商品B | 商品C | |
單價(元) | 15 | 20 | 30 |
每件重量(千克) | 0.2 | 0.3 | 0.4 |
表1
某日總店向各分店分配的商品A,B,C的數(shù)量如表2所示:
商品 分店 | 分店1 | 分店2 | …… | 分店 |
A | 12 | 20 | m1 | |
B | 15 | 20 | m2 | |
C | 20 | 15 | m3 |
表2
表3表示該日分配到各分店去的商品A,B,C的總價和總重量:
分店1 | 分店2 | …… | 分店 | |
總價(元) | ||||
總重量(千克) |
表3
則__________ ; __________ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)證明當時,關于的不等式恒成立;
(Ⅲ)若正實數(shù)滿足,證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax4lnx+bx4﹣c在x=1處取得極值﹣3﹣c.
(1)試求實數(shù)a,b的值;
(2)試求函數(shù)f(x)的單調區(qū)間;
(3)若對任意x>0,不等式f(x)≥﹣2c2恒成立,求實數(shù)c的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com