如圖,正三棱柱ABCA1B1C1中,DBC的中點,AA1=AB=1.

   (I)求證:A1C//平面AB1D;

   (II)求二面角BAB1D的大;

   (III)求點c到平面AB1D的距離.

解法一(I)證明:

連接A1B,設(shè)A1B∩AB1 = E,連接DE.

∵ABC—A1B1C1是正三棱柱,且AA1 = AB,

∴四邊形A1ABB1是正方形,

∴E是A1B的中點,

又D是BC的中點,

∴DE∥A1C.

∵DE平面AB1D,A1C平面AB1D,

∴A1C∥平面AB1D.

   (II)解:在面ABC內(nèi)作DF⊥AB于點F,在面A1ABB1內(nèi)作FG⊥AB1于點G,連接DG.

∵平面A1ABB1⊥平面ABC,  ∴DF⊥平面A1ABB1,

∴FG是DG在平面A1ABB1上的射影,  ∵FG⊥AB1, ∴DG⊥AB1

∴∠FGD是二面角B—AB1—D的平面角

設(shè)A1A = AB = 1,在正△ABC中,DF=

在△ABE中,,

 
在Rt△DFG中,,

所以,二面角B—AB1—D的大小為

   (III)解:∵平面B1BCC1⊥平面ABC,且AD⊥BC,

∴AD⊥平面B1BCC1,又AD平面AB1D,∴平面B1BCC1⊥平面AB1D.

在平面B1BCC1內(nèi)作CH⊥B1D交B1D的延長線于點H,

則CH的長度就是點C到平面AB1D的距離.

由△CDH∽△B1DB,得

即點C到平面AB1D的距離是

解法二:

建立空間直角坐標(biāo)系D—xyz,如圖,

   (I)證明:

連接A1B,設(shè)A1B∩AB1 = E,連接DE.

設(shè)A1A = AB = 1,

 

,

 

   (II)解:, ,

設(shè)是平面AB1D的法向量,則,

;

同理,可求得平面AB1B的法向量是

設(shè)二面角BAB1D的大小為θ,,

∴二面角BAB1D的大小為

   (III)解由(II)得平面AB1D的法向量為

取其單位法向量

∴點C到平面AB1D的距離

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1各棱長都等于a,E是BB1的中點.
(1)求直線C1B與平面A1ABB1所成角的正弦值;
(2)求證:平面AEC1⊥平面ACC1A1
(3)求點C1到平面AEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1的各棱長都2,E,F(xiàn)分別是AB,A1C1的中點,則EF的長是( 。
A、2
B、
3
C、
5
D、
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點.
(Ⅰ)求證:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州二模)如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點.
(Ⅰ)求證:AB1⊥面A1BD;
(Ⅱ)設(shè)點O為AB1上的動點,當(dāng)OD∥平面ABC時,求
AOOB1
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1中(注:底面為正三角形且側(cè)棱與底面垂直),BC=CC1=2,P,Q分別為BB1,CC1的中點.
(Ⅰ)求多面體ABC-A1PC1的體積;
(Ⅱ)求A1Q與BC1所成角的大小.

查看答案和解析>>

同步練習(xí)冊答案