已知函數(shù)f(x)=x2+|x-a|+1,a∈R.
(1)試判斷f(x)的奇偶性;
(2)若-
1
2
≤a≤
1
2
,求f(x)的最小值.
分析:(1)由于函數(shù)解析式為f(x)=x2+|x-a|+1,a∈R,所以利用解析式及判斷函數(shù)的奇偶性的方法,對a進行分類討論即可;
(2)由于-
1
2
≤a≤
1
2
,求f(x)的最小值,且解析式含有絕對值,所以利用對a的討論把解析式具體化,之后利用二次函數(shù)性質(zhì)求出定義域下的值域即可.
解答:解:(1)當a=0時,函數(shù)f(-x)=(-x)2+|-x|+1=f(x),
此時,f(x)為偶函數(shù).
當a≠0時,f(a)=a2+1,f(-a)=a2+2|a|+1,
f(a)≠f(-a),f(a)≠-f(-a),此時,f(x)為非奇非偶函數(shù).
(2)當x≤a時,
f(x)=x2-x+a+1=(x-
1
2
)2+a+
3
4

a≤
1
2
,故函數(shù)f(x)在(-∞,a]上單調(diào)遞減.
從而函數(shù)f(x)在(-∞,a]上的最小值為f(a)=a2+1
當x≥a時,函數(shù)f(x)=x2+x-a+1=(x+
1
2
)2-a+
3
4

a≥-
1
2

故函數(shù)f(x)在[a,+∞)上單調(diào)遞增,從而函數(shù)f(x)在[a,+∞)上的最小值為f(a)
=a2+1.
綜上得,當-
1
2
≤a≤
1
2
時,函數(shù)f(x)的最小值為a2+1.
點評:此題考查了學(xué)生分類討論的思想,奇函數(shù)與偶函數(shù)的判定,還考查了絕對值函數(shù)的拖絕對值的討論及二次函數(shù)在定義域下求值域.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案