在極坐標(biāo)系中,已知兩圓C1ρ=2cos θC2ρ=2sin θ,則過(guò)兩圓圓心的直線的極坐標(biāo)方程是________________________________________.
C1(1,0),C2(0,1)
由極坐標(biāo)系與直角坐標(biāo)系的互化關(guān)系知:
C1的直角坐標(biāo)方程為x2y2-2x=0,即(x-1)2y2=1,C1(1,0).同理可求C2(0,1).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)過(guò)原點(diǎn)的直線與圓的一個(gè)交點(diǎn)為,點(diǎn)為線段的中點(diǎn)。
(1)求圓的極坐標(biāo)方程;
(2)求點(diǎn)軌跡的極坐標(biāo)方程,并說(shuō)明它是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直線l的參數(shù)方程:(t為參數(shù))和圓C的極坐標(biāo)方程:ρ=2sin(θ+),判斷直線和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直線l經(jīng)過(guò)點(diǎn),傾斜角α=,圓C的極坐標(biāo)方程為.
(1)寫(xiě)出直線l的參數(shù)方程,并把圓C的方程化為直角坐標(biāo)方程;
(2)設(shè)l與圓C相交于兩點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為參數(shù)).以O(shè)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)直線的極坐標(biāo)方程是,射線與圓C的交點(diǎn)為O,P,與直線的交點(diǎn)為Q,求線段PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在極坐標(biāo)系中,求點(diǎn)到直線ρsinθ=2的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

將下列各極坐標(biāo)方程化為直角坐標(biāo)方程.
(1)θ=(ρ∈R). (2)ρcos2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知曲線C的極坐標(biāo)方程為ρ=4cos θ,以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程與直線l的普通方程;
(2)設(shè)曲線C與直線l相交于P,Q兩點(diǎn),以PQ為一條邊作曲線C的內(nèi)接矩形,求該矩形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在極坐標(biāo)系中,過(guò)點(diǎn)且垂直于極軸的直線方程的極坐標(biāo)方程是           (請(qǐng)選擇正確標(biāo)號(hào)填空) (1)。2)。3) (4)

查看答案和解析>>

同步練習(xí)冊(cè)答案