【題目】已知 ,且
(1)當(dāng) 時(shí),解不等式 ;
(2) 恒成立,求實(shí)數(shù) 的取值范圍.

【答案】
(1)解:當(dāng) 時(shí),解不等式 ,得 ,

,

故不等式的解集為


(2)解:由 恒成立,得 恒成立,

①當(dāng) 時(shí),有 ,得 ,

②當(dāng) 時(shí),有 ,得 ,

故實(shí)數(shù) 的取值范圍


【解析】(1)根據(jù)題意當(dāng)m=2時(shí)可得到 3 < log2 x < 1利用對(duì)數(shù)的單調(diào)性可得出不等式的解集。(2)由f ( x ) < 0 在 [ 2 , 4 ] 恒成立得到 3 < logm x < 1 在 [ 2 , 4 ] 恒成立,分情況討論分別解出m的取值范圍然后并起來即可得到m的取值范圍。
【考點(diǎn)精析】本題主要考查了對(duì)數(shù)的運(yùn)算性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握①加法:②減法:③數(shù)乘:才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy內(nèi),動(dòng)點(diǎn)P到定點(diǎn)F(﹣1,0)的距離與P到定直線x=﹣4的距離之比為
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)設(shè)點(diǎn)A、B是軌跡C上兩個(gè)動(dòng)點(diǎn),直線OA、OB與軌跡C的另一交點(diǎn)分別為A1、B1 , 且直線OA、OB的斜率之積等于- ,問四邊形ABA1B1的面積S是否為定值?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】)已知命題p:“x∈[1,2],x2﹣a≥0”,命題q:“x∈R,x2+2ax+2﹣a=0”.若命題“p且q”是真命題,則實(shí)數(shù)a的取值范圍為(
A.﹣2≤a≤1
B.a≤﹣2或1≤a≤2
C.a≥1
D.a≤﹣2或 a=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)= (x>0).
(1)求f(x)的最大值;
(2)證明:對(duì)任意實(shí)數(shù)a、b,恒有f(a)<b2﹣3b+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】考拉茲猜想又名3n+1猜想,是指對(duì)于每一個(gè)正整數(shù),如果它是奇數(shù),則對(duì)它乘3再加1;如果它是偶數(shù),則對(duì)它除以2.如此循環(huán),最終都能得到1.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)程序,輸出的結(jié)果i=(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的奇函數(shù)f(x)滿足f(x﹣4)=﹣f(x),且在區(qū)間[0,2]上是增函數(shù),若方程f(x)=m(m>0)在區(qū)間[﹣8,8]上有四個(gè)不同的根x1 , x2 , x3 , x4 , 則x1+x2+x3+x4=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓 的左焦點(diǎn)為F1 , 右焦點(diǎn)為F2 , 過F1的直線交橢圓于A,B兩點(diǎn),△ABF2的周長(zhǎng)為8,且△AF1F2面積最大時(shí),△AF1F2為正三角形.
(1)求橢圓E的方程;
(2)設(shè)動(dòng)直線l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線x=4相交于點(diǎn)Q.試探究:①以PQ為直徑的圓與x軸的位置關(guān)系? ②在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù)如表:

x

1

2

3

4

5

y

1.3

1.9

2.5

2.7

3.6


(1)畫出散點(diǎn)圖;
(2)根據(jù)下面提供的參考公式,求出回歸直線方程,并估計(jì)當(dāng)x=8時(shí),y的值.
(參考公式: = = =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若不等式|x+1|+| ﹣1|≤a有解,則實(shí)數(shù)a的取值范圍是(
A.a≥2
B.a<2
C.a≥1
D.a<1

查看答案和解析>>

同步練習(xí)冊(cè)答案